Skip to main content
Log in

Theranostic nanomaterials for image-guided gene therapy

  • Materials for Biological Modulation, Sensing, and Imaging
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Theranostics was proposed as a combined process of therapeutics and diagnostics methodology for increasing treatment efficacy and safety with simultaneous monitoring of the response to treatment. In the past two decades, nanotechnology has been the focus of developing strategies for drug delivery and imaging functions, and it has expanded to the design of multifunctional nanoparticles and the creation of “nanotheranostics” (i.e., theranostic nanomedicines). Nanotheranostics also shows potential in gene therapy; however, nanoparticle-mediated delivery of genes still faces major obstacles related to (1) the uptake by the reticuloendothelial system, (2) the ability to get across the target cell membranes through endocytosis, and (3) the ability to accumulate in organs with permeable vasculature. Here, we review the development and application of nanotheranostics, highlighting their relevance to gene therapy as well as molecular imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. S. Svenson, Mol. Pharmacol. 10, 848 (2013).

    Google Scholar 

  2. A. Fernandez-Fernandez, R. Manchanda, A.J. McGoron, Appl. Biochem. Biotechnol. 165, 1628 (2011).

    Google Scholar 

  3. M.G. Toscano, Z. Romero, P. Munoz, M. Cobo, K. Benabdellah, F. Martin, Gene Ther. 18, 117 (2011).

    Google Scholar 

  4. J.R. van Beijnum, W.J. Eijgelaar, A.W. Griffioen, Trends Mol. Med. 12, 44 (2006).

    Google Scholar 

  5. E. Fattal, A. Bochot, Intl. J. Pharm. 364, 237 (2008).

    Google Scholar 

  6. N.S. Que-Gewirth, B.A. Sullenger, Gene Ther. 14, 283 (2007).

    Google Scholar 

  7. A. Jyotil, S.P. Singh, M. Yashpal, P.D. Dwivedi, R. Shanker, J. Biomed. Nanotechnol. 7, 170 (2011).

    Google Scholar 

  8. Y.C. Tseng, S. Mozumdar, L. Huang, Adv. Drug Deliv. Rev. 61, 721 (2009).

    Google Scholar 

  9. P. Prabhu, V. Patravale, J. Biomed. Nanotechnol. 8, 859 (2012).

    Google Scholar 

  10. S. Rana, A. Bajaj, R. Mout, V.M. Rotello, Adv. Drug Deliv. Rev. 64, 200 (2012).

    Google Scholar 

  11. R. Juliano, J. Bauman, H. Kang, X. Ming, Mol. Pharmacol. 6, 686 (2009).

    Google Scholar 

  12. S. Nie, Nanomedicine 5, 523 (2010).

    Google Scholar 

  13. S. Aryal, S. Pilla, S. Gong, J. Nanosci. Nanotechnol. 9, 5701 (2009).

    Google Scholar 

  14. P. Ghosh, G. Han, M. De, C.K. Kim, V.M. Rotello, Adv. Drug Deliv. Rev. 60, 1307 (2008).

    Google Scholar 

  15. G. Han, C.T. Martin, V.M. Rotello, Chem. Biol. Drug Des. 67, 78 (2006).

    Google Scholar 

  16. G. Han , N.S. Chari, A. Verma, R. Hong, C.T. Martin, V.M. Rotello, Bioconjug. Chem. 16, 1356 (2005).

    Google Scholar 

  17. K.K. Sandhu, C.M. McIntosh, J.M. Simard, S.W. Smith, V.M. Rotello, Bioconjugate Chem. 13, 3 (2002).

    Google Scholar 

  18. M. Thomas, A.M. Klibanov, Proc. Natl. Acad. Sci. U.S.A. 100, 9138 (2003).

    Google Scholar 

  19. H. Wang, Y. Chen, X.Y. Li, Y. Liu, Mol. Pharmacol. 4, 189 (2007).

    Google Scholar 

  20. W. Lu, G. Zhang, R. Zhang, L.G. Flores, 2nd, Q. Huang, J.G. Gelovani, C. Li, Cancer Res. 70, 3177 (2010).

    Google Scholar 

  21. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, Cancer Res. 63, 1999 (2003).

    Google Scholar 

  22. H. Takahashi, Y. Niidome, S. Yamada, Chem. Commun. 2247 (2005).

  23. T. Kawano, M. Yamagata, H. Takahashi, Y. Niidome, S. Yamada, Y. Katayama, T. Niidome, J. Control. Release 111, 382 (2006).

    Google Scholar 

  24. A.K. Gupta, M. Gupta, Biomaterials 26, 3995 (2005).

    Google Scholar 

  25. Z. Medarova, W. Pham, C. Farrar, V. Petkova, A. Moore, Nat. Med. 13, 372 (2007).

    Google Scholar 

  26. J.H. Lee, K. Lee, S.H. Moon, Y. Lee, T.G. Park, J. Cheon, Angew. Chem. Int. Ed. 48, 4174 (2009).

    Google Scholar 

  27. Y. Namiki, T. Namiki, H. Yoshida, Y. Ishii, A. Tsubota, S. Koido, K. Nariai, M. Mitsunaga, S. Yanagisawa, H. Kashiwagi, Y. Mabashi, Y. Yumoto, S. Hoshina, K. Fujise, N. Tada, Nat. Nanotechnol. 4, 598 (2009).

    Google Scholar 

  28. L.J. Lee, Ann. Biomed. Eng. 34, 75 (2006).

    Google Scholar 

  29. J.M. Bryson, K.M. Fichter, W.J. Chu, J.H. Lee, J. Li, L.A. Madsen, P.M. McLendon, T.M. Reineke, Proc. Natl. Acad. Sci. U.S.A. 106, 16913 (2009).

    Google Scholar 

  30. L. Liu, X. Li, S. Hou, Y. Xue, Y. Yao, Y. Ma, X. Feng, S. He, Y. Lu, Y. Wang, X. Zeng, Chem. Commun. 44, 6759 (2009).

    Google Scholar 

  31. J.A. Wolff, D.B. Rozema, Mol. Ther. 16, 8 (2008).

    Google Scholar 

  32. Y. Zhang, A. Satterlee, L. Huang, Mol. Ther. 20, 1298 (2012).

    Google Scholar 

  33. S.D. Li, L. Huang, J. Control. Release 145, 178 (2010).

    Google Scholar 

  34. F.M. Veronese, G. Pasut, Drug Discov. Today 10, 1451 (2005).

    Google Scholar 

  35. M. Harada-Shiba, K. Yamauchi, A. Harada, I. Takamisawa, K. Shimokado, K. Kataoka, Gene Ther. 9, 407 (2002).

    Google Scholar 

  36. C. Li, M.-F. Penet, F. Wildes, T. Takagi, Z. Chen, P.T. Winnard, D. Artemov, Z.M. Bhujwalla, ACS Nano 4, 6707 (2010).

    Google Scholar 

  37. S.J. Lee, M.S. Huh, S.Y. Lee, S. Min, S. Lee, H. Koo, J.-U. Chu, K.E. Lee, H. Jeon, Y. Choi, K. Choi, Y. Byun, S.Y. Jeong, K. Park, K. Kim, I.C. Kwon, Angew. Chem. Int. Ed. 51, 7203 (2012).

    Google Scholar 

  38. D.W. Bartlett, H. Su, I.J. Hildebrandt, W.A. Weber, M.E. Davis, Proc. Natl. Acad. Sci. U.S.A. 104, 15549 (2007).

    Google Scholar 

  39. S.R. Mudd, V.S. Trubetskoy, A.V. Blokhin, J.P. Weichert, J.A. Wolff, Bioconjug. Chem. 21, 1183 (2010).

    Google Scholar 

  40. S.G. Zhu, J.J. Xiang, X.L. Li, S.R. Shen, H.B. Lu, J. Zhou, W. Xiong, B.C. Zhang, X.M. Nie, M. Zhou, K. Tang, G.Y. Li, Biotechnol. Appl. Biochem. 39, 179 (2004).

    Google Scholar 

  41. Y. Chen, Z. Xue, D. Zheng, K. Xia, Y. Zhao, T. Liu, Z. Long, J. Xia, Curr. Gene Ther. 3, 273 (2003).

    Google Scholar 

  42. T.K. Jain, I. Roy, T.K. De, A. Maitra, J. Am. Chem. Soc. 120, 11092 (1998).

    Google Scholar 

  43. I. Roy, T.Y. Ohulchanskyy, D.J. Bharali, H.E. Pudavar, R.A. Mistretta, N. Kaur, P.N. Prasad, Proc. Natl. Acad. Sci. U.S.A. 102, 279 (2005).

    Google Scholar 

  44. C.R. Martin, P. Kohli, Nat. Rev. Drug Discov. 2, 29 (2003).

    Google Scholar 

  45. H. Meng, M. Liong, T. Xia, Z. Li, Z. Ji, J.I. Zink, A.E. Nel, ACS Nano 4, 4539 (2010).

    Google Scholar 

  46. H. Meng, W.X. Mai, H. Zhang, M. Xue, T. Xia, S. Lin, X. Wang, Y. Zhao, Z. Ji, J.I. Zink, A.E. Nel, ACS Nano 7, 994 (2013).

    Google Scholar 

  47. L. Feng, S. Zhang, Z. Liu, Nanoscale 3, 1252 (2011).

    Google Scholar 

  48. Y. Wen, F. Xing, S. He, S. Song, L. Wang, Y. Long, D. Li, C. Fan, Chem. Commun. 46, 2596 (2010).

    Google Scholar 

  49. L.A. Tang, J. Wang, K.P. Loh, J. Am. Chem. Soc. 132, 10976 (2010).

    Google Scholar 

  50. S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009).

    Google Scholar 

  51. H. Bao, Y. Pan, Y. Ping, N.G. Sahoo, T. Wu, L. Li, J. Li, L.H. Gan, Small 7, 1569 (2011).

    Google Scholar 

  52. K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Adv. Mater. 24, 1868 (2012).

    Google Scholar 

  53. X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Res. 1, 203 (2008).

    Google Scholar 

  54. K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Nano Lett. 10, 3318 (2010).

    Google Scholar 

  55. C. Peng, W. Hu, Y. Zhou, C. Fan, Q. Huang, Small 6, 1686 (2010).

    Google Scholar 

  56. Y. Chang, S.-T. Yang, J.-H. Liu, E. Dong, Y. Wang, A. Cao, Y. Liu, H. Wang, Toxicol. Lett. 200, 201 (2011).

    Google Scholar 

  57. K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo, D. Cui, Nanoscale Res. Lett. 6, 8 (2011).

  58. S. Zhang, K. Yang, L. Feng, Z. Liu, Carbon 49, 4040 (2011).

    Google Scholar 

  59. M. Wojtoniszak, X. Chen, R.J. Kalenczuk, A. Wajda, J. Łapczuk, M. Kurzewski, M. Drozdzik, P.K. Chu, E. Borowiak-Palen, Colloids Surf., B 89, 79 (2012).

    Google Scholar 

  60. K. Yang, J. Wan, S. Zhang, Y. Zhang, S.-T. Lee, Z. Liu, ACS Nano 5, 516 (2010).

    Google Scholar 

  61. S. Keller, M.P. Sanderson, A. Stoeck, P. Altevogt, Immunol. Lett. 107, 102 (2006).

    Google Scholar 

  62. E. van der Pol, A.N. Boing, P. Harrison, A. Sturk, R. Nieuwland, Pharmacol. Rev. 64, 676 (2012).

    Google Scholar 

  63. H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J.J. Lee, J.O. Lotvall, Nat. Cell Biol. 9, 654 (2007).

    Google Scholar 

  64. N. Kosaka, H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki, T. Ochiya, J. Biol. Chem. 285, 17442 (2010).

    Google Scholar 

  65. A.H. Alhasan, P.C. Patel, C.H.J. Choi, C.A. Mirkin, Small (2013), doi 10.1002/smll.201302143.

Download references

Acknowledgments

This study was funded by the Intramural Research Program (Theragnosis, Global RNAi Carrier Initiative, and KIST Young Fellow) of KIST and the Global Innovative Research Center (GiRC) Program through the National Research Foundation of Korea (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Rim Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, S.R., Ku, S.H., Joo, M.K. et al. Theranostic nanomaterials for image-guided gene therapy. MRS Bulletin 39, 44–50 (2014). https://doi.org/10.1557/mrs.2013.312

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.312

Navigation