Skip to main content
Log in

Quantum confinement in oxide quantum wells

  • Functional Oxide Interfaces
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Quantum wells created from nanostructured transition metal oxides offer unique possibilities for creating and manipulating quantum states of matter, including novel superconductors, high Curie temperature magnets, controllable metal-insulator transitions, and new topological states. This article explores what is known and conjectured about confined electronic states in oxide quantum wells. Theoretical challenges are reviewed, along with issues arising in the creation of oxide quantum wells. Examples from the current experimental state of the art are summarized, open questions are discussed, and prospects for the future are outlined. The key roles of epitaxial strain and proximity effects are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. C. Weisbuch, B. Vinter, Quantum Semiconductor Structures (Academic Press, San Diego, 1991).

  2. C.H. Ahn, A. Bhattacharya, M. Di Ventra, J.N. Eckstein, C.D. Frisbie, M.E. Gershenson, A.M. Goldman, I.H. Inoue, J. Mannhart, A.J. Millis, A.F. Morpurgo, D. Natelson, J.-M. Triscone, Rev. Mod. Phys. 78, 1185 (2006).

    Google Scholar 

  3. J.S. Kim, S.S.A. Seo, M.F. Chisholm, R.K. Kremer, H.U. Habermeier, B. Keimer, H.N. Lee, Phys. Rev. B 82, 201407 (2010).

    Google Scholar 

  4. P. Moetakef, T.A. Cain, D.G. Ouellette, J.Y. Zhang, D.O. Klenov, A. Janotti, C.G. Van de Walle, S. Rajan, S.J. Allen, S. Stemmer, Appl. Phys. Lett. 99, 232116 (2011).

    Google Scholar 

  5. N. Nakagawa, H.Y. Hwang, D.A. Muller, Nat. Mater. 5, 204 (2006).

    Google Scholar 

  6. J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 55, 418 (1985).

    Google Scholar 

  7. P.M. Woodward, Acta Crystallogr., Sect. B: Struct. Sci 53, 44 (1997).

    Google Scholar 

  8. P.M. Woodward, Acta Crystallogr., Sect. B: Struct. Sci 53, 32 (1997).

    Google Scholar 

  9. A.M. Glazer, Acta Crystallogr., Sect. B: Struct. Sci 28, 3384 (1972).

    Google Scholar 

  10. J.B. Torrance, P. Lacorre, A.I. Nazzal, E.J. Ansaldo, C. Niedermayer, Phys. Rev. B 45, 8209 (1992).

    Google Scholar 

  11. J.B. Goodenough, J.S. Zhou, J. Mater. Chem. 17, 2394 (2007).

    Google Scholar 

  12. E. Pavarini, A. Yamasaki, J. Nuss, O.K. Andersen, New J. Phys. 7, 1 (2005).

    Google Scholar 

  13. M. Mochizuki, M. Imada, New J. Phys. 6, 154 (2004).

    Google Scholar 

  14. M. Itoh, M. Tsuchiya, H. Tanaka, K. Motoya, J. Phys. Soc. Jpn. 68, 2783 (1999).

    Google Scholar 

  15. J. Akimitsu, H. Ichikawa, N. Eguchi, T. Miyano, M. Nishi, K. Kakurai, J. Phys. Soc. Jpn. 70, 3475 (2001).

    Google Scholar 

  16. H. Nakao, Y. Wakabayashi, T. Kiyama, Y. Murakami, M. von Zimmermann, J.P. Hill, D. Gibbs, S. Ishihara, Y. Taguchi, Y. Tokura, Phys. Rev. B 66, 184419 (2002).

    Google Scholar 

  17. R. Schmitz, O. Entin-Wohlman, A. Aharony, A.B. Harris, E. Muller-Hartmann, Phys. Rev. B 71, 144412 (2005).

    Google Scholar 

  18. E. Pavarini, S. Biermann, A. Poteryaev, A.I. Lichtenstein, A. Georges, O.K. Andersen, Phys. Rev. Lett. 92, 176403 (2004).

    Google Scholar 

  19. F.Z. He, B.O. Wells, Z.G. Ban, S.P. Alpay, S. Grenier, S.M. Shapiro, W.D. Si, A. Clark, X.X. Xi, Phys. Rev. B 70, 235405 (2004).

    Google Scholar 

  20. A. Vailionis, H. Boschker, W. Siemons, E.P. Houwman, D.H.A. Blank, G. Rijnders, G. Koster, Phys. Rev. B 83, 064101 (2011).

    Google Scholar 

  21. S.J. May, J.W. Kim, J.M. Rondinelli, E. Karapetrova, N.A. Spaldin, A. Bhattacharya, P.J. Ryan, Phys. Rev. B 82, 014110 (2010).

    Google Scholar 

  22. C.L. Jia, S.B. Mi, M. Faley, U. Poppe, J. Schubert, K. Urban, Phys. Rev. B 79, 081405 (2009).

    Google Scholar 

  23. H. Rotella, U. Luders, P.E. Janolin, V.H. Dao, D. Chateigner, R. Feyerherm, E. Dudzik, W. Prellier, Phys. Rev. B 85, 184101 (2012).

    Google Scholar 

  24. S.J. May, C.R. Smith, J.W. Kim, E. Karapetrova, A. Bhattacharya, P.J. Ryan, Phys. Rev. B 83, 153411 (2011).

    Google Scholar 

  25. A. Borisevich, O.S. Ovchinnikov, H.J. Chang, M.P. Oxley, P. Yu, J. Seidel, E.A. Eliseev, A.N. Morozovska, R. Ramesh, S.J. Pennycook, ACS Nano 4, 6071 (2010).

    Google Scholar 

  26. J. He, A. Borisevich, S.V. Kalinin, S.J. Pennycook, S.T. Pantelides, Phys. Rev. Lett. 105, 227203 (2010).

    Google Scholar 

  27. J. Hwang, J. Son, J.Y. Zhang, A. Janotti, C.G. Van de Walle, S. Stemmer, Phys. Rev. B 87, 060101 (2013).

    Google Scholar 

  28. J. Hwang, J.Y. Zhang, J. Son, S. Stemmer, Appl. Phys. Lett. 100, 191909 (2012).

    Google Scholar 

  29. J.M. Rondinelli, S.J. May, J.W. Freeland, MRS Bull. 37, 261 (2012).

    Google Scholar 

  30. K.Y. Yang, W.G. Zhu, D. Xiao, S. Okamoto, Z.Q. Wang, Y. Ran, Phys. Rev. B 84, 201104 (2011).

    Google Scholar 

  31. A. Ruegg, G.A. Fiete, Phys. Rev. B 84, 201103 (2011).

    Google Scholar 

  32. A.B. Posadas, M. Lippmaa, F.J. Walker, M. Dawber, C.H. Ahn, J.M. Triscone, in Physics of Ferroelectrics: A Modern Perspective, K.M. Rabe, C.H. Ahn, J.M. Triscone, Eds. (Springer-Verlag, Berlin, 2007), vol. 105, pp. 219–304.

  33. T. Ohnishi, K. Shibuya, T. Yamamoto, M. Lippmaa, J. Appl. Phys. 103, 103703 (2008).

    Google Scholar 

  34. B. Jalan, P. Moetakef, S. Stemmer, Appl. Phys. Lett. 95, 032906 (2009).

    Google Scholar 

  35. J.J. Cuomo, J.P. Doyle, J. Bruley, J.C. Liu, Appl. Phys. Lett. 58, 466 (1991).

    Google Scholar 

  36. L.F. Kourkoutis, H.L. Xin, T. Higuchi, Y. Hotta, J.H. Lee, Y. Hikita, D.G. Schlom, H.Y. Hwang, D.A. Muller, Philos. Mag. 90, 4731 (2010).

    Google Scholar 

  37. S.J. Pennycook, M.F. Chisholm, A.R. Lupini, M. Varela, A.Y. Borisevich, M.P. Oxley, W.D. Luo, K. van Benthem, S.H. Oh, D.L. Sales, Philos. Trans. R. Soc. London, Ser. A 367, 3709 (2009).

    Google Scholar 

  38. J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer, Ultramicroscopy 110, 118 (2010).

    Google Scholar 

  39. J.M. LeBeau, A.J. D’Alfonso, N.J. Wright, L.J. Allen, S. Stemmer, Appl. Phys. Lett. 98, 052904 (2011).

    Google Scholar 

  40. P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Google Scholar 

  41. J. Son, P. Moetakef, B. Jalan, O. Bierwagen, N.J. Wright, R. Engel-Herbert, S. Stemmer, Nat. Mater. 9, 482 (2010).

    Google Scholar 

  42. Y. Krockenberger, M. Uchida, K.S. Takahashi, M. Nakamura, M. Kawasaki, Y. Tokura, Appl. Phys. Lett. 97, 082502 (2010).

    Google Scholar 

  43. K. Yoshimatsu, T. Okabe, H. Kumigashira, S. Okamoto, S. Aizaki, A. Fujimori, M. Oshima, Phys. Rev. Lett. 104, 147601 (2010).

    Google Scholar 

  44. K. Yoshimatsu, K. Horiba, H. Kumigashira, T. Yoshida, A. Fujimori, M. Oshima, Science 333, 319 (2011).

    Google Scholar 

  45. K. Yoshimatsu, E. Sakai, M. Kobayashi, K. Horiba, T. Yoshida, A. Fujimori, M. Oshima, H. Kumigashira, Phys. Rev. B 88 115309 (2013).

    Google Scholar 

  46. A.X. Gray, A. Janotti, J. Son, J.M. LeBeau, S. Ueda, Y. Yamashita, K. Kobayashi, A.M. Kaiser, R. Sutarto, H. Wadati, G.A. Sawatzky, C.G. Van de Walle, S. Stemmer, C.S. Fadley, Phys. Rev. B 84, 075104 (2011).

    Google Scholar 

  47. J. Son, P. Moetakef, J.M. LeBeau, D. Ouellette, L. Balents, S.J. Allen, S. Stemmer, Appl. Phys. Lett. 96, 062114 (2010).

    Google Scholar 

  48. R. Scherwitzl, S. Gariglio, M. Gabay, P. Zubko, M. Gibert, J.M. Triscone, Phys. Rev Lett. 106, 246403 (2011).

    Google Scholar 

  49. J. Liu, M. Kareev, D. Meyers, B. Gray, P. Ryan, J.W. Freeland, J. Chakhalian, Phys. Rev. Lett. 109, 107402 (2012).

    Google Scholar 

  50. A.V. Boris, Y. Matiks, E. Benckiser, A. Frano, P. Popovich, V. Hinkov, P. Wochner, M. Castro-Colin, E. Detemple, V.K. Malik, C. Bernhard, T. Prokscha, A. Suter, Z. Salman, E. Morenzoni, Science 332, 937 (2011).

    Google Scholar 

  51. T.S. Santos, B.J. Kirby, S. Kumar, S.J. May, J.A. Borchers, B.B. Maranville, J. Zarestky, S. Velthuis, J. van den Brink, A. Bhattacharya, Phys. Rev. Lett. 107, 167202 (2011).

    Google Scholar 

  52. S. Okamoto, A.J. Millis, Nature 428, 630 (2004).

    Google Scholar 

  53. S. Okamoto, A.J. Millis, N.A. Spaldin, Phys. Rev. Lett. 97, 056802 (2006).

    Google Scholar 

  54. J. Chaloupka, G. Khaliullin, Phys. Rev. Lett. 100, 016404 (2008).

    Google Scholar 

  55. P. Hansmann, X.P. Yang, A. Toschi, G. Khaliullin, O.K. Andersen, K. Held, Phys. Rev. Lett. 103, 016401 (2009).

    Google Scholar 

  56. M. Wu, E. Benckiser, M.W. Haverkort, A. Frano, Y. Lu, N. Nwanko, S. Brück, P. Audehm, E. Goering, S. Mache, V. Hinkov, P. Wochner, G. Christiani, S. Heinze, G. Logvenov, H.-U. Habermeier, B. Keimer, Phys. Rev. B 88, 125124 (2013).

    Google Scholar 

  57. A. Frano, E. Schierle, M.W. Haverkort, Y. Lu, M. Wu, S. Blanco-Canosa, U. Nwankwo, A.V. Boris, P. Wochner, G. Cristiani, H.U. Habermeier, G. Logvenov, V. Hinkov, E. Benckiser, E. Weschke, B. Keimer, Phys. Rev. Lett. 111, 106804 (2013).

    Google Scholar 

  58. M.J. Han, X. Wang, C.A. Marianetti, A.J. Millis, Phys. Rev. Lett. 107, 206804 (2011).

    Google Scholar 

  59. D.G. Ouellette, S. Lee, J. Son, S. Stemmer, L. Balents, A.J. Millis, S.J. Allen, Phys. Rev. B 82, 165112 (2010).

    Google Scholar 

  60. M.K. Stewart, D. Brownstead, J. Liu, M. Kareev, J. Chakhalian, D.N. Basov, Phys. Rev. B 86, 205102 (2012).

    Google Scholar 

  61. M.L. Medarde, J. Phys. Condens. Matter 9, 1679 (1997).

    Google Scholar 

  62. S. Lee, R. Chen, L. Balents, Phys. Rev. Lett. 106, 016405 (2011).

    Google Scholar 

  63. S.B. Lee, R. Chen, L. Balents, Phys. Rev. B 84, 165119 (2011).

    Google Scholar 

  64. B. Lau, A.J. Millis, Phys. Rev. Lett. 110, 126404 (2013).

    Google Scholar 

  65. J.A. Liu, S. Okamoto, M. van Veenendaal, M. Kareev, B. Gray, P. Ryan, J.W. Freeland, J. Chakhalian, Phys. Rev. B 83, 161102 (2011).

    Google Scholar 

  66. P. Moetakef, C.A. Jackson, J. Hwang, L. Balents, S.J. Allen, S. Stemmer, Phys. Rev. B. 86, 201102(R) (2012).

    Google Scholar 

  67. Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai, Y. Iye, Phys. Rev. Lett. 70, 2126 (1993).

    Google Scholar 

  68. J.Y. Zhang, J. Hwang, S. Raghavan, S. Stemmer, Phys. Rev. Lett. 110, 256401 (2013).

    Google Scholar 

  69. R. Chen, S. Lee, L. Balents, Phys. Rev. B 87, 161119(R) (2013).

    Google Scholar 

  70. J. Son, B. Jalan, A.P. Kajdos, L. Balents, S.J. Allen, S. Stemmer, Appl. Phys. Lett. 99, 192107 (2011).

    Google Scholar 

  71. A.P. Kajdos, D.G. Ouellette, T.A. Cain, S. Stemmer, Appl. Phys. Lett. 103, 082120 (2013).

    Google Scholar 

  72. P. Moetakef, J.R. Williams, D.G. Ouellette, A.P. Kajdos, D. Goldhaber-Gordon, S.J. Allen, S. Stemmer, Phys. Rev. X2, 021014 (2012).

  73. M. Boucherit, O.F. Shoron, T.A. Cain, C.A. Jackson, S. Stemmer, S. Rajan, Appl. Phys. Lett. 102, 242909 (2013).

    Google Scholar 

  74. T.A. Cain, S. Lee, P. Moetakef, L. Balents, S. Stemmer, S.J. Allen, Appl. Phys. Lett. 100, 161601 (2012).

    Google Scholar 

  75. G. Conti, A.M. Kaiser, A.X. Gray, S. Nemsak, G.K. Palsson, J. Son, P. Moetakef, A. Janotti, L. Bjaalie, C.S. Conlon, D. Eiteneer, A.A. Greer, A. Perona, A. Rattanachata, A.Y. Saw, A. Bostwick, W. Stolte, A. Hloskovsky, W. Drube, S. Ueda, K. Kobayashi, C.G. Van de Walle, S. Stemmer, C.M. Schneider, C.S. Fadley, J. Appl. Phys. 113, 143704 (2013).

    Google Scholar 

  76. C. Noguera, J. Phys. Condens. Matter 12, R367 (2000).

    Google Scholar 

  77. G. Khalsa, A.H. MacDonald, Phys. Rev. B 86, 125121 (2012).

    Google Scholar 

  78. S.Y. Park, A.J. Millis, Phys. Rev. B 87, 205145 (2013).

    Google Scholar 

Download references

Acknowledgments

S.S. would like to acknowledge discussions and collaborations with Jim Allen, Leon Balents, Pouya Moetakef, Clayton Jackson, Dmitri Klenov, Jack Zhang, Jinwoo Hwang, Junwoo Son, Chris Van de Walle, Anderson Janotti, Siddharth Rajan, David Goldhaber-Gordon, and Jimmy Williams. She also thanks Adam Kajdos, Jack Zhang, Jinwoo Hwang, and Clayton Jackson for help with some of the figures for this article. Work at UCSB was supported by the Army Research Office (Grant No. W911-NF-09–1-0398), the US National Science Foundation (Grant Nos. DMR-1006640 and DMR-1121053), the US Department of Energy (Award No. DE-FG02–02ER45994), and DARPA (Award No. W911NF-12–1-0574). A.J.M. thanks Hanghui Chen, Hung Dang, M.J. Han, Chungwei Lin, Peter Littlewood, Chris Marianetti, Satoshi Okamoto, Hyowon Park, Seyoung Park, Darrell Schlom, and Jean-Marc Triscone for collaborations and discussions and the US Department of Energy (Award No. DOE-FG-BES2–04ER46169) and the US Army Research Office (Award W911NF-09–1-0345) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Stemmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stemmer, S., Millis, A.J. Quantum confinement in oxide quantum wells. MRS Bulletin 38, 1032–1039 (2013). https://doi.org/10.1557/mrs.2013.265

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.265

Navigation