Skip to main content

Advertisement

Log in

Oxide interfaces with enhanced ion conductivity

  • Functional Oxide Interfaces
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The new field of nano-ionics is expected to yield large improvements in the performance of oxide-based energy generation and storage devices based on exploiting size effects in ion conducting materials. The search for novel materials with enhanced ionic conductivity for application in energy devices has uncovered an exciting new facet of oxide interfaces. With judicious choice of the constituent materials, oxide heterostructures can exhibit enhanced ion mobility compared to the bulk counterparts. Here we review recent experimental and theoretical progress on enhancement of oxide-ion conductivity arising in oxide ultrathin layers and at their interfaces, and describe the different scenarios, space-charge effects, epitaxial strain, and atomic reconstruction at the interface, proposed to account for the observed conductivity enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. E. Dagotto, Science 309, 257 (2005).

    Google Scholar 

  2. A. Ohtomo, H.Y. Hwang, Nature 427, 423 (2004).

    Google Scholar 

  3. N. Reyren, S. Thiel, A.D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.-S. Ruetschi, D. Jaccard, M. Gabay, D.A. Muller, J.-M. Triscone, J. Mannhart, Science 317, 1196 (2007).

    Google Scholar 

  4. A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J.C. Maan, W.G. van derWiel, G. Rijnders, D.H.A. Blank, H. Hilgenkamp, Nat. Mater. 6, 493 (2007).

    Google Scholar 

  5. E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J.M. Triscone, P. Ghosez, Nature 452, 732 (2008).

    Google Scholar 

  6. S. Okamoto, A. Millis, Nature 428, 630 (2004).

    Google Scholar 

  7. J. Mannhart, D.G. Schlom, Science 327, 1607 (2010).

    Google Scholar 

  8. Y. Tokura, N. Nagaosa, Science 288, 462 (2000).

    Google Scholar 

  9. S. Okamoto, A.J. Millis, Nature 428, 630 (2004).

    Google Scholar 

  10. J. Chakhalian, J.W. Freeland, G. Strajer, J. Strempfer, G. Khaliullin, J.C. Cezar, T. Charlton, R. Dalgliesh, C. Bernhard, G. Cristiani, H.U. Habermeier, B. Keimer, Nat. Phys. 2, 244 (2006).

    Google Scholar 

  11. P. Yu, J.-S. Lee, S. Okamoto, M.D. Rossell, M. Huijben, C.-H. Yang, Q. He, J.X. Zhang, S.Y. Yang, M.J. Lee, Q.M. Ramasse, R. Erni, Y.-H. Chu, D.A. Arena, C.-C. Kao, L.W. Martin, R. Ramesh, Phys. Rev. Lett. 105, 027201 (2010).

    Google Scholar 

  12. J. Garcia-Barriocanal, J.C. Cezar, F.Y. Bruno, P. Thakur, N.B. Brookes, C. Utfeld, A. Rivera-Calzada, S.R. Giblin, J.W. Taylor, J.A. Duffy, S.B. Dugdale, T. Nakamura, K. Kodama, C. Leon, S. Okamoto, J. Santamaria, Nat. Commun. 1, 82 (2010).

    Google Scholar 

  13. J. Garcia-Barriocanal, F.Y. Bruno, A. Rivera-Calzada, Z. Sefrioui, N.M. Nemes, M. Garcia-Hernandez, J. Rubio-Zuazo, G.R. Castro, M. Varela, S.J. Pennycook, C. Leon, J. Santamaria, Adv. Mater. 22, 627 (2010).

    Google Scholar 

  14. J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, J. Santamaria, Science 321, 676 (2008).

    Google Scholar 

  15. B.C.H. Steele, A. Heinzel, Nature 414, 345 (2001).

    Google Scholar 

  16. A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, W. van Schalkwijk, Nat. Mater. 4, 366 (2005).

    Google Scholar 

  17. A.V. Chadwick, Nature 408, 926 (2000).

    Google Scholar 

  18. T.H. Etsell, S.N. Flengas, Chem. Rev. 70, 339 (1970).

    Google Scholar 

  19. J. Maier, Solid State Ionics 175, 7 (2004).

    Google Scholar 

  20. R. Waser, M. Aono, Nat. Mater. 6, 833 (2007).

    Google Scholar 

  21. H.L. Tuller, Solid State Ionics 131, 143 (2000).

    Google Scholar 

  22. J. Maier, Nat. Mater. 4, 805 (2005).

    Google Scholar 

  23. K.L. Kliewer, J.S. Koehler, Phys. Rev. 140, 1226A (1965).

    Google Scholar 

  24. J. Maier, J. Electrochem. Soc. 134, 1524 (1987).

    Google Scholar 

  25. H.L. Tuller, Solid State Ionics 131, 142 (2000).

    Google Scholar 

  26. J. Maier, Solid State Ionics 157, 327 (2003).

    Google Scholar 

  27. Y.M. Chiang, E.B. Lavik, I. Kosacki, H.L. Tuller, J.Y. Ying, J. Electroceram. 1, 7 (1997).

    Google Scholar 

  28. N. Sata, K. Eberman, K. Eberl, J. Maier, Nature 408, 946 (2000).

    Google Scholar 

  29. I. Kosacki, T. Suzuki, V. Petrovsky, H.U. Anderson, Solid State Ionics 136, 1225 (2000).

    Google Scholar 

  30. C. Peters, A. Weber, E. Ivers-Tiffee, H. Störmer, D. Gerthsen, M. Bockmeyer, R. Krüger , “Interaction Between Grain Size and Electrical Conductivity in YSZ Thin Films,” 2006 Fall Meeting, Materials Research Society (Boston, MA), AA10.3.

  31. P. Mondal, H. Hahn, Ber. Bunsen Ges. Phys. Chem. 101, 1765 (1997).

    Google Scholar 

  32. S. Jiang, J. Mater. Res. 12, 2374 (1997).

    Google Scholar 

  33. G. Knoener, K. Reinemann, R. Roewer, U. Soedervall, H.-E. Schaefer, Proc. Nat. Acad. Sci. U.S.A. 100, 3870 (2003).

    Google Scholar 

  34. R.A. De Souza, M.J. Pietrovski, U. Anselmi-Tamburini, S. Kim, Z.A. Munir, M. Martín, Phys. Chem. Chem. Phys. 10, 2067 (2008).

    Google Scholar 

  35. S.J. Litzelman, J.L. Hertz, W. Jung, H. Tuller, Fuel Cells 5, 294 (2008).

    Google Scholar 

  36. B.C.H. Steele, Eur. Fuel Cell News 7, 16 (2000).

    Google Scholar 

  37. I. Kosacki, B. Gorman, H.U. Anderson, in Ionic and Mixed Conductors, Vol. III, T.A. Ramanayanaran, W.L. Worrell, H.L. Tuller, A.C. Kandkar, M. Morgensen, W. Gopel, Eds. (Electrochemical Society, Pennington, NJ, 1998), p. 631.

  38. I. Kosacki, C.M. Rouleau, P.F. Becher, J. Bentley, D.H. Lowdness, Solid State Ionics 176, 1319 (2005).

    Google Scholar 

  39. A. Karthikeyan, Ch.L. Chan, L. Ramanathan, Appl. Phys. Lett. 89, 183116 (2006).

    Google Scholar 

  40. X. Guo, E. Vasco, S. Mi, K. Szot, E. Wachsman, R. Waser, Acta Mater. 53, 5161 (2005).

    Google Scholar 

  41. S. Azad, O.A. Marina, C.M. Wang, L. Saraf, V. Shutthanandan, D.E. McCready, A. El-Azab, J.E. Jaffe, M.H. Englehard, C.H.F. Peden, S. Thevuthasan, Appl. Phys. Lett. 86, 131906 (2006).

    Google Scholar 

  42. C.M. Wang, M.H. Englehard, S. Azad, L. Saraf, O.A. Marina, D.E. McCready, V. Shutthanandan, Z.Q. Yu, S. Thevuthasan, M. Watanabe, D.B. Williams, Solid State Ionics 177, 1299 (2006).

    Google Scholar 

  43. A. Peters, C. Korte, D. Hesse, N. Zakharov, J. Janek, Solid State Ionics 178, 67 (2007).

    Google Scholar 

  44. C. Korte, A. Peters, J. Janek, D. Hesse, N. Zakharov, Phys. Chem. Chem. Phys. 10, 4623 (2008).

    Google Scholar 

  45. A. Ohtomo, D.A. Muller, J.L. Grazul, H. Hwang, Nature 419, 378 (2002).

    Google Scholar 

  46. S. Thiel, G. Hammerl, A. Schmehl, C.W. Schneider, J. Mannhart, Science 313, 1942 (2006).

    Google Scholar 

  47. X. Guo, Science 324, 465 (2009).

    Google Scholar 

  48. J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, J. Santamaria, Science 324, 465 (2009).

    Google Scholar 

  49. J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, M.R. Diaz-Guillen, K.J. Moreno, J.A. Diaz-Guillen, E. Iborra, A.F. Fuentes, S.J. Pennycook, C. Leon, J. Santamaria, ChemPhysChem 10, 1003 (2009).

    Google Scholar 

  50. E. Lee, F.B. Prinz, W. Cai, Phys. Rev. B 83, 052301 (2011).

    Google Scholar 

  51. K.L. Ngai, J. Non-Cryst. Solids 203, 232 (1996).

    Google Scholar 

  52. S.K.R.S. Sankaranarayanan, S. Ramanathan, J. Chem. Phys. 134, 064703 (2011).

    Google Scholar 

  53. K.L. Ngai, J. Santamaria, C. Leon, Eur. Phys. J. B 86, 7 (2013).

    Google Scholar 

  54. S.T. Norberg, S. Hull, I. Ahmed, S.G. Eriksson, D. Marrocchelli, P.A. Madden, P. Li, J.T.S. Irvine, Chem. Mater. 23, 1356 (2011).

    Google Scholar 

  55. M. Sillassen, P. Eklund, N. Pryds, E. Johnson, U. Helmersson, J. Bottiger, Adv. Funct. Mater. 20, 2071 (2010).

    Google Scholar 

  56. N. Schichtel, C. Korte, D. Hesse, J. Janek, Phys. Chem. Chem. Phys. 11, 3043 (2009).

    Google Scholar 

  57. J. Jiang, X. Hu, W. Shen, C. Ni, J.L. Hertz, Appl. Phys. Lett. 102, 143901 (2013).

    Google Scholar 

  58. B. Li, J. Zhang, T. Kaspar, V. Shutthanandan, R.C. Ewing, J. Lian, Phys. Chem. Chem. Phys. 15, 1296 (2013).

    Google Scholar 

  59. J. Hyodo, S. Ida, J.A. Kilner, T. Ishihara, Solid State Ionics 230, 16 (2013).

    Google Scholar 

  60. H. Aydin, C. Korte, M. Rohnkea, J. Janek, Phys. Chem. Chem. Phys. 15, 1944 (2013).

    Google Scholar 

  61. S.P.S. Badwal, M.J. Bannister, M.J. Murray, J. Electroanal. Chem. 168, 363 (1984).

    Google Scholar 

  62. D. Pergolesi, E. Fabbri, S.N. Cook, V. Roddatis, E. Traversa, J.A. Kilner, ACS Nano 6, 10524 (2012).

    Google Scholar 

  63. M. Gerstl, G. Friedbacher, F. Kubel, H. Hutter, J. Fleig, Phys. Chem. Chem. Phys. 15, 1097 (2013).

    Google Scholar 

  64. A. Cavallaro, M. Burriel, J. Roqueta, A. Apostolidis, A. Bernardi, A. Tarancón, R. Srinivasan, S.N. Cook, H.L. Fraser, J.A. Kilner, D.W. McComb, J. Santiso, Solid State Ionics 181, 592 (2010).

    Google Scholar 

  65. A. Rivera-Calzada, M.R. Diaz-Guillen, O.J. Dura, G. Sanchez-Santolino, T.J. Pennycook, R. Schmidt, F.Y. Bruno, J. Garcia-Barriocanal, Z. Sefrioui, N.M. Nemes, M. Garcia-Hernandez, M. Varela, C. Leon, S.T. Pantelides, S.J. Pennycook, J. Santamaria, Adv. Mater. 23, 5268 (2011).

    Google Scholar 

  66. E. Fabbri, D. Pergolesi, E. Traversa, Sci. Technol. Adv. Mater. 11, 054503 (2010).

    Google Scholar 

  67. J.L.M. Rupp, Solid State Ionics 207, 1 (2012).

    Google Scholar 

  68. C. Korte, N. Schichtel, D. Hesse, J. Janek, Monatsh. Chem. 140, 1069 (2009).

    Google Scholar 

  69. T.J. Pennycook, M.J. Beck, K. Varga, M. Varela, S.J. Pennycook, S.T. Pantelides, Phys. Rev. Lett. 104, 115901 (2010).

    Google Scholar 

  70. A. Kushima, B. Yildiz, J. Mater. Chem. 20, 4809 (2010).

    Google Scholar 

  71. G. Dezenneau, J. Hermet, B. Dupe, Int. J. Hydrogen Energy 37, 8081 (2012).

    Google Scholar 

  72. R.A. De Souza, A. Ramadan, S. Hörner, Energy Environ. Sci. 5, 5445 (2012).

    Google Scholar 

  73. J. Hintenberg, T. Zacherle, R.A. de Souza, Phys. Rev. Lett. 110, 2015901 (2013).

    Google Scholar 

  74. T.J. Pennycook, M.P. Oxley, J. Garcia-Barriocanal, F.Y. Bruno, C. Leon, J. Santamaria, S.T. Pantelides, M. Varela, S.J. Pennycook, Eur. Phys. J. Appl. Phys. 54, 33507 (2011).

    Google Scholar 

  75. F. Li, R. Lu, H. Wu, E. Kan, C. Xiao, K. Deng, D.E. Ellis, Phys. Chem. Chem. Phys. 15, 2692 (2013).

    Google Scholar 

  76. N. Nakagawa, H.Y. Hwang, D.A. Muller, Nat. Mater. 5, 204 (2006).

    Google Scholar 

  77. M.S. Dyer, G.R. Darling, J.B. Claridge, M.J. Rosseinsky, Angew. Chem. Int. Ed. 51, 3418 (2012).

    Google Scholar 

  78. A. Cavallaro, M. Burriel, J. Roqueta, A. Apostolidis, A. Bernardi, A. Tarancón, R. Srinivasan, S.N. Cook, H.L. Fraser, J.A. Kilner, D.W. McComb, J. Santiso, Solid State Ionics 1314, 592 (2010).

  79. E.D. Wachsman, K.T. Lee, Science 334, 935 (2011).

    Google Scholar 

  80. J. Fleig, Annu. Rev. Mater. Res. 33, 361 (2003).

    Google Scholar 

  81. M. Kubicek, A. Limbeck, T. Frömling, H. Hutter, J. Fleig, J. Electrochem. Soc. 158, B727 (2011).

    Google Scholar 

  82. S.B. Adler, Chem. Rev. 104, 4791 (2004).

    Google Scholar 

  83. C. Peters, A. Weber, E. Ivers-Tiffee, J. Electrochem. Soc. 155, B730 (2008).

    Google Scholar 

  84. M. Burriel, G. Garcia, J. Santiso, J.A. Kilner, J.C.C. Richard, S.J. Skinner, J. Mater. Chem. 18, 416 (2008).

    Google Scholar 

  85. H.I. Ji, J. Hwang, K.J. Yoon, J.W. Son, B.K. Kim, H.W. Lee, J.H. Lee, Energy Environ. Sci. 6, 116 (2013).

    Google Scholar 

  86. A. Kushima, S. Yip, B. Yildiz, Phys. Rev. B 11, 115435 (2010).

    Google Scholar 

  87. J.W. Han, B. Yildiz, J. Mater. Chem. 21, 18983 (2011).

    Google Scholar 

  88. M. Sase, K. Yasgiro, K. Sato, J. Mizusaki, T. Kawada, N. Sakai, K. Yamaji, T. Horita, H. Yokokawa, Solid State Ionics 178, 1843 (2008).

    Google Scholar 

  89. H. Jalili, J.W. Han, Y. Kuru, Z. Cai, B. Yildiz, J. Phys. Chem. Lett. 2, 801 (2011).

    Google Scholar 

  90. M. Kubicek, Z. Cai, W. Ma, B. Yildiz, H. Hutter, J. Fleig, ACS Nano 7, 3276 (2013).

    Google Scholar 

  91. C.C. Chao, J.S. Park, X. Tian, J.H. Shim, T.M. Gür, F.B. Prinz, ACS Nano 7, 2186 (2013).

    Google Scholar 

Download references

Acknowledgments

The authors thank the financial support of the Spanish MICINN through Grant MAT2011–27470-C02, Consolider Ingenio 2010—CSD2009–00013 (Imagine), and by CAM through Grant S2009/MAT-1756 (Phama).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Leon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leon, C., Santamaria, J. & Boukamp, B.A. Oxide interfaces with enhanced ion conductivity. MRS Bulletin 38, 1056–1063 (2013). https://doi.org/10.1557/mrs.2013.264

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.264

Navigation