Skip to main content
Log in

Surface and interface effects in magnetic core–shell nanoparticles

  • Magnetic Nanoparticles
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Using computational modeling, we describe and explain the effects resulting from surfaces and interfaces in core–shell nanoparticles. We outline the basis of the atomistic spin model, which is used to simulate the equilibrium and dynamic magnetic properties of magnetic nanoparticles. The physical origin of magnetic surface anisotropy is described, along with its effect on the magnetic spin configuration and energy landscape. Importantly, it is shown that a cubic anisotropic surface can be induced, which leads to a complex energy landscape with a non-trivial size dependence. Additional microstructural effects in realistic nanoparticle microstructures are investigated, and fundamental magnetic properties can be significantly altered as a result. Finally, an important effect known as exchange bias is also described. Exchange bias causes an enhancement of the thermal stability of magnetic nanoparticles, but due to its atomic origin, it also leads to complicated physical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. K. Binder, D.W. Heermann, Monte Carlo Methods in Statistical Physics (Springer-Verlag, Berlin, 1979), p. 204.

    Google Scholar 

  2. P. Gambardella, S. Rusponi, M. Veronese, S.S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P.H. Dederichs, K. Kern, C. Carbone, H. Brune, Science 300, 1130 (2003).

    Google Scholar 

  3. B. Lazarovits, L. Szunyogh, P. Weinberger, Phys. Rev. B 65, 104441 (2002).

    Google Scholar 

  4. M. Jamet, W. Wernsdorfer, C. Thirion, V. Dupuis, P. Mélinon, A. Pérez, D. Mailly, Phys. Rev. B 69, 024401 (2004).

    Google Scholar 

  5. D.A. Eastham, I.W. Kirkman, J. Phys. Condens. Matter 1 (12), L525 (2000).

    Google Scholar 

  6. W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956).

    Google Scholar 

  7. K. O’Grady, L.E. Fernandez-Outon, G. Vallejo-Fernandez, J. Magn. Magn. Mater. 322, 883 (2010).

    Google Scholar 

  8. S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, R.E. Scheuerlein, E.J. O’Sullivan, S.L. Brown, J. Bucchigano, D.W. Abraham, Y. Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, W.J. Gallagher, J. Appl. Phys. 85, 5828 (1999).

    Google Scholar 

  9. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogués, Nature 19, 423 (2003).

    Google Scholar 

  10. R.F.L. Evans, R. Yanes, O. Mryasov, R.W. Chantrell, O. Chubykalo-Fesenko, Europhys. Lett. 88, 57004 (2009).

    Google Scholar 

  11. R.F.L. Evans, D. Bate, R.W. Chantrell, R. Yanes, O. Chubykalo-Fesenko, Phys. Rev. B 84, 092404 (2011).

    Google Scholar 

  12. O. Iglesias, X. Batlle, A. Labarta, Phys. Rev. B 72, 212401 (2005).

    Google Scholar 

  13. E. Eftaxias, K.N. Trohidou, Phys. Rev. B 71, 134406 (2005).

    Google Scholar 

  14. F. Burrows, C. Parker, R.F.L. Evans, Y. Hancock, O. Hovorka, R.W. Chantrell, J. Phys. 043, 474010 (2010).

    Google Scholar 

  15. C. Haase, U. Nowak, Phys. Rev. B 85, 045435 (2012).

    Google Scholar 

  16. O.N. Mryasov, U. Nowak, K.Y. Guslienko, R.W. Chantrell, Europhys. Lett. 69, 805 (2005).

    Google Scholar 

  17. U. Nowak, R. Wieser, O.N. Mryasov, K. Guslienko, R.W. Chantrell, Phys. Rev. B 72, 172410 (2005).

    Google Scholar 

  18. L. Néel, J. Phys. Radium 15, 376 (1954).

    Google Scholar 

  19. M. Jamet, W. Wernsdorfer, C. Thirion, V. Dupuis, P. Melinon, A. Perez, D. Mailly, Phys. Rev. B 69, 24401 (2004).

    Google Scholar 

  20. F. Dorfbauer, R. Evans, M. Kirschner, O. Chubykalo-Fesenko, R. Chantrell, T. Schrefl, J. Magn. Magn. Mater. 316, E791 (2007).

    Google Scholar 

  21. R. Evans, F. Dorfbauer, O. Chubykalo-Fesenko, T. Schrefl, R.W. Chantrell, IEEE Trans. Magn. 43, 3106 (2007).

    Google Scholar 

  22. P. Bruno, Phys. Rev. B 39, 865 (1989).

    Google Scholar 

  23. L.L. Szunyogh, L. Udvardi, Philos. Mag. B 78, 617 (1998).

    Google Scholar 

  24. F. Luis, F. Bartolomé, F. Petroff, J. Bartolomé, L.M. García, C. Deranlot, H. Jaffrès, M.J. Martínez, P. Bencok, F. Wilhelm, A. Rogalev, N.B. Brookes, Europhys. Lett. 76, 142 (2006).

    Google Scholar 

  25. C. Binns, S.H. Baker, K.W. Edmonds, P. Finetti, M.J. Maher, S.C. Louch S.S. Dhesi, N.B. Brookes, J. Phys. Condens. Matter 318, 350 (2002).

    Google Scholar 

  26. F. Bodker, S. Mörup, S. Linderoth, Phys. Rev. Lett. 72, 282 (1994).

    Google Scholar 

  27. D. Fiorani, Ed., Surface Effects in Magnetic Nanoparticles (Springer Science, NY, 2005).

  28. A.-H. Lu, E.L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 46, 1222 (2007)

    Google Scholar 

  29. F. Luis, J.M. Torres, L.M. García, J. Bartolomé, J. Stankiewicz, F. Petroff, F. Fettar J.-L. Maurice, A. Vaurès, Phys. Rev. B 65, 094409 (2002).

    Google Scholar 

  30. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989 (2000).

    Google Scholar 

  31. G.F. Goya, T.S. Berquó, F.C. Fonseca, M.P. Morales, J. Appl. Phys. 94, 3520 (2003).

    Google Scholar 

  32. N. Pérez, P. Guardia, A.G. Roca, M.P. Morales, C.J. Serna, O. Iglesias F. Bartolomé, L.M. García, X. Batlle, A. Labarta, Nanotechnology 19, 475704 (2008).

    Google Scholar 

  33. D.A. Garanin, H. Kachkachi, Phys. Rev. Lett. 90, 065504 (2003).

    Google Scholar 

  34. R. Yanes, O. Chubykalo-Fesenko, R.F.L. Evans, R.W. Chantrell, J. Phys. D 43, 474009 (2010).

    Google Scholar 

  35. R. Yanes, O. Chubykalo-Fesenko, H. Kachkachi, D.A. Garanin, R. Evans R.W. Chantrell, Phys. Rev. B 76, 064416 (2007).

    Google Scholar 

  36. F. Dorfbauer, T. Schrefl, M. Kirschner, G. Hrkac, D. Suess, O. Ertl, J. Fidler J. Appl. Phys. 99, 08G706 (2006).

    Google Scholar 

  37. R. Evans, U. Nowak, F. Dorfbauer, T. Shrefl, O. Mryasov, R.W. Chantrell G. Grochola, J. Appl. Phys. 99, 08G703 (2006).

    Google Scholar 

  38. C.J. Aas, L. Szunyogh, R.F.L. Evans, R.W. Chantrell, J. Phys. Condens. Matter 25, 296006 (2013).

    Google Scholar 

  39. H. Wang, P.-W. Ma, C.H. Woo, Phys. Rev B 82, 144304 (2010).

    Google Scholar 

  40. C. Antoniak, M.E. Gruner, M. Spasova, A.V. Trunova, F.M. Romer, A. Warland B. Krumme, K. Fauth, S.Sun, P. Entel, M. Farle, H. Wende, Nat. Commun. 2, 528 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. L. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, R.F.L., Chantrell, R.W. & Chubykalo-Fesenko, O. Surface and interface effects in magnetic core–shell nanoparticles. MRS Bulletin 38, 909–914 (2013). https://doi.org/10.1557/mrs.2013.231

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.231

Navigation