Skip to main content
Log in

Engineering and quantum control of single spins in semiconductors

  • Nitrogen-vacancy centers: Physics and applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The nitrogen-vacancy (NV) center in diamond offers the opportunity to develop quantum technologies that leverage the defect’s atom-like properties using established engineering techniques from the semiconductor industry. While many NV center applications are motivated by the remarkable properties of isolated NV centers in bulk diamond, realizing these technologies requires addressing a number of device and materials engineering challenges unique to creating and controlling individual semiconductor spins. We review recent advances in interfacing NV centers with on-chip electronics that enable control over the defect’s spin and orbital degrees of freedom and review fabrication techniques for creating single NV centers with nanometer-scale placement accuracies. We also discuss efforts, motivated by the success of diamond NV center applications, to identify defect spins with similar properties to the NV center in more technologically mature semiconductors such as SiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294,1488 (2001).

    Google Scholar 

  2. R. Hanson, D.D. Awschalom, Nature 453,1043 (2008).

    Google Scholar 

  3. D.M. Toyli, D.J. Christle, A. Alkauskas, CG. Van de Walle, D.D. Awschalom, Phys. Rev. X 2, 031001 (2012).

    Google Scholar 

  4. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, Phys. Rev. Lett. 93, 130501 (2004).

    Google Scholar 

  5. G.D. Fuchs, V.V. Dobrovitski, D.M. Toyli, F.J. Heremans, D.D. Awschalom, Science 326, 1520 (2009).

    Google Scholar 

  6. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P.R. Hemmer F. Jelezko, J. Wrachtrup, Nat. Mater. 8, 383 (2009).

    Google Scholar 

  7. G.D. Fuchs, V.V. Dobrovitski, D.M. Toyli, F.J. Heremans, C.D. Weis, T. Schenkel D.D. Awschalom, Nat. Phys. 6, 668 (2010).

    Google Scholar 

  8. G.D. Fuchs, A.L. Falk, V.V. Dobrovitski, D.D. Awschalom, Phys. Rev. Lett. 108, 157602 (2012).

    Google Scholar 

  9. T. van der Sar, Z.H. Wang, M.S. Blok, H. Bernien, T.H. Taminiau, D.M. Toyli D.A. Lidar, D.D. Awschalom, R. Hanson, V.V. Dobrovitski, Nature 484, 82 (2012).

    Google Scholar 

  10. G.D. Fuchs, G. Burkard, P.V. Klimov, D.D. Awschalom, Nat. Phys. 7, 789 (2011).

    Google Scholar 

  11. K.-M.C. Fu, C. Santori, P.E. Barclay, L. Rogers, N. Manson, R.G. Beausoleil Phys. Rev. Lett. 103, 256404 (2009).

    Google Scholar 

  12. B.B. Buckley, G.D. Fuchs, L.C. Bassett, D.D. Awschalom, Science 330, 1212 (2010).

    Google Scholar 

  13. L.C. Bassett, F.J. Heremans, C.G. Yale, B.B. Buckley, D.D. Awschalom, Phys. Rev. Lett. 107, 266403 (2011).

    Google Scholar 

  14. H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, R. Hanson Phys. Rev. Lett. 108, 043604 (2012).

    Google Scholar 

  15. A. Sipahigil, M.L. Goldman, E. Togan, Y. Chu, M. Markham, D.J. Twitchen A.S. Zibrov, A. Kubanek, M.D. Lukin, Phys. Rev. Lett. 108,143601 (2012).

    Google Scholar 

  16. E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V.G. Dutt, A.S. Sorenson, P.R. Hemmer, A.S. Zibrov, M.D. Lukin, Nature 466, 730 (2010).

    Google Scholar 

  17. I. Aharonovich, A.D. Greentree, S. Prawer, Nat. Photonics 5, 397 (2011).

    Google Scholar 

  18. J.R. Rabeau, P. Reichart, G. Tamanyan, D.N. Jamieson, S. Prawer, F Jelezko, T. Gaebel, I. Popa, M. Domhan, J. Wrachtrup, Appl. Phys. Lett. 88, 023113 (2006).

    Google Scholar 

  19. J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa F. Jelezko, J. Wrachtrup, Appl. Phys. Lett. 87, 261909 (2005).

    Google Scholar 

  20. C.D. Weis, A. Schuh, A. Batra, A. Persaud, I.W. Rangelow, J. Bokor, C.C. Lo, S. Cabrini, E. Sideras-Haddad, G.D. Fuchs, R. Hanson, D.D. Awschalom, T. Schenkel, J. Vac. Sci. Technol., B 26, 2596 (2008).

    Google Scholar 

  21. S. Pezzagna, D. Wildanger, P. Mazarov, A.D. Wieck, Y. Sarov, I. Rangelow, B. Naydenov, F. Jelezko, S.W. Hell, J. Meijer, Small 6, 2117 (2010).

    Google Scholar 

  22. D.M. Toyli, C.D. Weis, G.D. Fuchs, T. Schenkel, D.D. Awschalom, Nano Lett. 10, 3168 (2010).

    Google Scholar 

  23. B.J.M. Hausmann, T.M. Babinec, J.T. Choy, J.S. Hodges, S. Hong, I. Bulu A. Yacoby, M.D. Lukin, M. Loncar, New J. Phys. 13, 045004 (2011).

    Google Scholar 

  24. B. Naydenov, F. Reinhard, A. Lammle, V. Richter, R. Kalish, U.F.S. D’Haenens-Johansson, M. Newton, F. Jelezko, J. Wrachtrup, Appl. Phys. Lett. 97, 242511 (2010).

    Google Scholar 

  25. P. Maletinsky, S. Hong, M.S. Grinolds, B. Hausmann, M.D. Lukin R.L, Walsworth, M. Loncar, A. Yacoby, Nat. Nanotechnol. 7, 320 (2012).

    Google Scholar 

  26. T. Staudacher, F. Ziem, L. Haussler, R. Stohr, S. Steinert, F. Reinhard J. Scharpf, A. Denisenko, J. Wrachtrup, Appl. Phys. Lett. 101, 212401 (2012).

    Google Scholar 

  27. K. Ohno, F.J. Heremans, L.C. Bassett, B.A. Myers, D.M. Toyli, A.C. Bleszynski Jayich, C.J. Palmstrom, D.D. Awschalom, Appl. Phys. Lett. 101, 082413 (2012).

    Google Scholar 

  28. T. Ishikawa, K.-M.C. Fu, C. Santori, V.M. Acosta, R.G. Beausoleil H. Watanabe, S. Shikata, K.M. Itoh, Nano Lett. 12, 2083 (2012).

    Google Scholar 

  29. J.R. Weber, W.F. Koehl, J.B. Varley, A. Janotti, B.B. Buckley, C.G. Van de Walle, D.D. Awschalom, Proc. Natl. Acad. Sci. U.S.A. 107, 8513 (2010).

    Google Scholar 

  30. A. Gali, Phys. Status Solidi B 248, 1337 (2011).

    Google Scholar 

  31. J. Lu, M.V.S. Chandrashekhar, J.J. Parks, D.C. Ralph, M.G. Spencer, Appl. Phys. Lett. 94, 162115 (2009).

    Google Scholar 

  32. S.E. Saddow, A. Agarwal, Eds., Advances in Silicon Carbide Processing and Applications (Artech House, Boston, 2004).

  33. C.-M. Zetterling, Ed., Process Technology for Silicon Carbide Devices (Institution of Electrical Engineers, London, 2002).

  34. R. Cheung, Ed., Silicon Carbide Microelectromechanical Systems for Harsh Environments (Imperial College Press, London, 2004).

  35. S.H. Ryu, K.T. Kornegay, J.A. Cooper, M.R. Melloch, IEEE Trans. Electron Devices 45, 45 (1998).

    Google Scholar 

  36. L. Liu, J.H. Edgar, Mater. Sci. Eng., R 37, 61 (2002).

    Google Scholar 

  37. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Haas, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006).

    Google Scholar 

  38. N.T. Son, T. Umeda, J. Isoya, A. Gall, M. Bockstedte, B. Magnusson A. Ellison, N. Morishita, T. Ohshima, H. Itoh, E. Janzen, Mater. Sci. Forum 527–529 (2006).

  39. W.F. Koehl, B.B. Buckley, F.J. Heremans, G. Calusine, D.D. Awschalom, Nature 479, 84 (2011).

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from AFOSR, ARO, and DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Toyli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toyli, D.M., Bassett, L.C., Buckley, B.B. et al. Engineering and quantum control of single spins in semiconductors. MRS Bulletin 38, 139–143 (2013). https://doi.org/10.1557/mrs.2013.21

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.21

Navigation