Skip to main content

Advertisement

Log in

Surface science for improved ion traps

  • Materials issues for quantum computation
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Trapped ions are sensitive to electric-field noise from trap-electrode surfaces. This noise has been an obstacle to progress in trapped-ion quantum information processing (QIP) experiments for more than a decade. It causes motional heating of the ions, and thus quantum-state decoherence. This heating is anomalous because it is not easily explained by typical technical-noise sources. Experimental evidence of its dependence on ion-electrode distance, frequency, and electrode temperature points to the surface, rather than the bulk, of the trap electrodes as the origin. In this article, we review experimental efforts and models to help identify and reduce or eliminate the source of the anomalous heating. Recent progress to reduce the heating with in situ cleaning indicates that it may not be a fundamental limit to trapped-ion QIP. Moreover, the extreme sensitivity of trapped ions to electric-field noise may potentially be used as a new tool in surface science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

    Google Scholar 

  2. R. Blatt, D.J. Wineland, Nature 453, 1008 (2008).

    Google Scholar 

  3. R. Blatt, C.F. Roos, Nat. Phys. 8, 277 (2012).

    Google Scholar 

  4. C. Monroe, J. Kim, Science 339, 1164 (2013).

    Google Scholar 

  5. D.P. DiVincenzo, Fortschr. Phys. 48, 771 (2000).

    Google Scholar 

  6. D.J. Wineland, C. Monroe, W.M. Itano, D. Leibfried, B.E. King, D.M. Meekhof, J. Res. Nat. Inst. Stand. Technol. 103, 259 (1998).

    Google Scholar 

  7. J. Preskill, Proc. R. Soc. London, Ser. A 454, 385 (1998).

    Google Scholar 

  8. A. Sørensen, K. Mølmer, Phys. Rev. A 62, 022311 (2000).

    Google Scholar 

  9. E. Knill, Nature 463, 441 (2010).

    Google Scholar 

  10. Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Phys. Rev. A. 61 063418 (2000).

    Google Scholar 

  11. A. Safavi-Naini, P. Rabl, P.F. Weck, H.R. Sadeghpour, Phys. Rev. A 84, 023412 (2011).

    Google Scholar 

  12. N. Daniilidis, S. Narayanan, S.A. Möller, R. Clark, T.E. Lee, P.J. Leek, A. Wallraff, St. Schulz, F. Schmidt-Kaler, H. Häffner, New J. Phys. 13, 013032 (2011).

    Google Scholar 

  13. F. Diedrich, J.C. Bergquist, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 62, 403 (1989).

    Google Scholar 

  14. C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 75, 4714 (1995).

    Google Scholar 

  15. A. van der Ziel, Adv. Electron. El. Phys. 49, 225 (1979).

    Google Scholar 

  16. G.W. Timm, A. van der Ziel, Physica 32, 1333 (1966).

    Google Scholar 

  17. Ch. Kleint, Surf. Sci. 200, 472 (1988).

    Google Scholar 

  18. R. Gomer, Rep. Prog. Phys. 53, 917 (1990).

    Google Scholar 

  19. M.A. Gesley, L.W. Swanson, Phys. Rev. B 32, 7703 (1985).

    Google Scholar 

  20. M. Gesley, L. Swanson, Phys. Rev. A 37, 4879 (1988).

    Google Scholar 

  21. A. Safavi-Naini, E. Kim, P.F. Weck, P. Rabl, H.R. Sadeghpour, Phys. Rev. A 87, 023421 (2013).

    Google Scholar 

  22. L. Faoro, L.B. Ioffe, Phys. Rev. Lett. 96, 047001 (2006).

    Google Scholar 

  23. J.B. Pendry, P.D. Kirkman, E. Castano, Phys. Rev. Lett. 57, 2983 (1986).

    Google Scholar 

  24. H.M. Benia, P. Myrach, A. Gonchar, T. Risse, N. Nilius, H.J. Freund, Phys. Rev. B 81, 241415 (2010).

    Google Scholar 

  25. S. Seidelin, J. Chiaverini, R. Reichle, J.J. Bollinger, D. Leibfried, J. Britton, J.H. Wesenberg, R.B. Blakestad, R.J. Epstein, D.B. Hume, W.M. Itano, J.D. Jost, C. Langer, R. Ozeri, N. Shiga, D.J. Wineland, Phys. Rev. Lett. 96, 253003 (2006).

    Google Scholar 

  26. R. Maiwald, D. Leibfried, J. Britton, J.C. Bergquist, G. Leuchs, D.J. Wineland, Nat. Phys. 5, 551 (2009); C.L. Arrington et al., Rev. Sci. Instrum. 84, 085001 (2013).

    Google Scholar 

  27. R. DeVoe, C. Kurtsiefer, Phys. Rev. A 65, 063407 (2002).

    Google Scholar 

  28. D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.H. Bollinger, D. Leibfried, D. Wineland, D. Stick J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, R.E. Slusher, Quantum Inf. Comput. 9, 901 (2009).

    Google Scholar 

  29. J. Britton, D. Leibfried, J.A. Beall, R.B. Blakestad, J.H. Wesenberg, D.J. Wineland, Appl. Phys. Lett. 95, 173102 (2009).

    Google Scholar 

  30. D. Stick, K.M. Fortier, R. Haltli, C. Highstrete, D.L. Moehring, C. Tigges, M.G. Blain, Physics (2010) (available at http://arxiv.org/abs/1008.0990v2).

  31. J.T. Merrill, C. Volin, D. Landgren, J.M. Amini, K. Wright, S.C. Doret, C.-S. Pai, H. Hayden, T. Killian, D. Faircloth, K.R. Brown, A.W. Harter, R.E. Slusher, New J. Phys. 13, 103005 (2011).

    Google Scholar 

  32. M.D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W.M. Itano, J.D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, D.J. Wineland, Nature 429, 737 (2004).

    Google Scholar 

  33. R.B. Blakestad, C. Ospelkaus, A.P. VanDevender, J.H. Wesenberg, M.J. Biercuk, D. Leibfried, D.J. Wineland, Phys. Rev. A 84, 032314 (2011).

    Google Scholar 

  34. M. Cetina A. Grier, J. Campbell, I. Chuang, V. Vuletic, Phys. Rev. A 76, 041401 (2007).

    Google Scholar 

  35. J.M. Sage, A.J. Kerman, J. Chiaverini, Phys. Rev. A 86, 013417 (2012).

    Google Scholar 

  36. L. Deslauriers, S. Olmschenk, D. Stick, W.K. Hensinger, J. Sterk, C. Monroe Phys. Rev. Lett. 97, 103007 (2006).

    Google Scholar 

  37. J. Labaziewicz Y.F. Ge, P. Antoli, D. Leibrandt, K.R. Brown, I.L. Chuang, Phys. Rev. Lett. 100, 013001 (2008).

    Google Scholar 

  38. J. Labaziewicz, Y.F. Ge, D. Leibrandt, S.X. Wang, R. Shewmon, I.L. Chuang, Phys. Rev. Lett. 101, 180602 (2008).

    Google Scholar 

  39. S.X. Wang, Y.F. Ge, J. Labaziewicz, E. Dauler, K. Berggren, I.L. Chuang, Appl. Phys. Lett. 97, 244102 (2010).

    Google Scholar 

  40. K.R. Brown, C. Ospelkaus, Y. Colombe, A.C. Wilson, D. Leibfried, D.J. Wineland, Nature 471, 196 (2011).

    Google Scholar 

  41. B. Hammer, J.K. Nørskov, Nature 376, 238 (1995).

    Google Scholar 

  42. G.V. Hansson, S.A. Flodström, Phys. Rev. B 18, 1572 (1978).

    Google Scholar 

  43. T.-S. Lin, Y.-W. Chung, Superlattices Microstruct. 4, 709 (1988).

    Google Scholar 

  44. M. Chaigneau, G. Picardi, R. Ossikovski, Surf. Sci. 604, 701 (2010).

    Google Scholar 

  45. K. Boller, R.P. Haelbich, H. Hogrefe, W. Jark, C. Kunz, Nucl. Instrum. Methods 208, 273 (1983).

    Google Scholar 

  46. J. Krim, Thin Solid Films 137, 297 (1986).

    Google Scholar 

  47. R.E. Clausing, L.C. Emerson, L. Heatherly, R.J. Colchin, J.C. Twichell, J. Vac. Sci. Technol. 13, 437 (1976).

    Google Scholar 

  48. D.A. Hite, Y. Colombe, A.C. Wilson, K.R. Brown, U. Warring, R. Jördens J.D. Jost, K.S. McKay, D.P. Pappas, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 109, 103001 (2012).

    Google Scholar 

  49. A. Krozer, M. Rodahl, J. Vac. Sci. Technol., A 15, 1704 (1997).

    Google Scholar 

  50. Ph. Delaporte, R. Oltra, in Recent Advances in Laser Processing of Materials (European Materials Research Society Series), J. Perriere, E. Millon, E. Fogarassy, Eds. (Elsevier, Amsterdam, 2006), pp. 411–440.

    Google Scholar 

  51. R. Viswanathan, I. Hussia, J. Opt. Soc. B 3, 796 (1986).

    Google Scholar 

  52. H.K. Park, C.P. Grigoropoulos, W.P. Leung, A.C. Tam, IEEE Trans. Compon. Packag. Manuf. Technol. Part A 17, 631 (1994).

    Google Scholar 

  53. D.T.C. Allcock, L. Guidoni, T.P. Harty, C.J. Ballance, M.G. Blain, A.M. Steane, D.M. Lucas, New J. Phys. 13, 123023 (2011).

    Google Scholar 

  54. W. Kautek, J. Krüger, Proc. SPIE 2207, 600 (1994).

    Google Scholar 

  55. After submission of this article, similar analyses and results have been reported by N. Daniilidis, S. Gerber, G. Bolloten, M. Ramm, A. Ransford, E. Ulin-Avila I. Talukdar, H. Häffner, Physics (2013) (available at arXiv 1307.7194v1).

  56. T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319, 1808 (2008).

    Google Scholar 

  57. Y.T. Yang, C. Callegari, X.L. Feng, M.L. Roukes, Nano Lett. 11, 1753 (2011)

    Google Scholar 

  58. N.A. Robertson, J.R. Blackwood, S. Buchman, R.L. Byer, J. Camp, D. Gill, J. Hanson, S. Williams, P. Zhou, Class. Quantum Grav. 23, 2665 (2006).

    Google Scholar 

  59. R.D. Reasenberg, B.R. Patla, J.D. Phillips, R. Thapa, Class. Quantum Grav. 29, 184013 (2012).

    Google Scholar 

  60. A.O. Sushkov, W.J. Kim, D.A.R. Dalvit, S.K. Lamoreaux, Nat. Phys. 7, 230 (2011).

    Google Scholar 

  61. R.O. Behunin, Y. Zeng, D.A.R. Dalvit, S. Reynaud, Phys. Rev. A 86, 052509 (2012).

    Google Scholar 

  62. Ch. Roos, Th. Zeiger, H. Rohde, H.C. Nägerl, J. Eschner, D. Leibfried F. Schmidt-Kaler, R. Blatt, Phys. Rev Lett. 83, 4713 (1999).

    Google Scholar 

  63. Chr. Tamm, D. Engelke, V. Bühner, Phys. Rev A 61, 053405 (2000).

    Google Scholar 

  64. L. Deslauriers, P.C. Haljan, PJ. Lee, K.-A. Brickman, B.B. Blinov, M.J. Madsen, C. Monroe, Phys. Rev A 70, 043408 (2004).

    Google Scholar 

  65. D. Stick, W.K. Hensinger, S. Olmschenk, M.J. Madsen, K. Schwab, C. Monroe, Nat. Phys. 2, 36 (2006).

    Google Scholar 

  66. R.J. Epstein, S. Seidelin, D. Leibfried, J.H. Wesenberg, J.J. Bollinger, J.M. Amini, R.B. Blakestad, J. Britton, J.P. Home, W.M. Itano, J.D. Jost, E. Knill, C. Langer R. Ozeri, N. Shiga, D.J. Wineland, Phys. Rev A 76, 033411 (2007).

    Google Scholar 

  67. D.M. Lucas, B.C. Keitch, J.P. Home, G. Imreh, M.J. McDonnell, D.N. Stacey, D.J. Szwer, A.M. Steane, Quantum Phys. (2007) (available at arxiv/pdf/0710/0710.4421v1.pdf).

  68. J. Benhelm, G. Kirchmair, C.F. Roos, R. Blatt, Phys. Rev A 77, 062306 (2008).

    Google Scholar 

  69. S.A. Schulz, U. Poschinger, F. Ziesel, F. Schmidt-Kaler, New J. Phys. 10, 045007 (2008).

    Google Scholar 

  70. D.T.C. Allcock, J.A. Sherman, M.J. Curtis, G. Imreh, A.H. Burrell, D.J. Szwer D.N. Stacey, A.M. Steane, D.M. Lucas, New J. Phys. 12, 053026 (2010).

    Google Scholar 

  71. U. Warring, C. Ospelkaus, Y. Colombe, K.R. Brown, J.M. Amini, M. Carsjens, D. Leibfried, D.J. Wineland, Phys. Rev. A 87, 013437 (2013).

    Google Scholar 

Download references

Acknowledgements

This article is a contribution of NIST and is not subject to US copyright. This work was supported by IARPA under ARO Contract Numbers DNI-017389 and EAO-139840, ONR, and the NIST Quantum Information Program. We thank Jim Bergquist, Jim Phillips, and Mark Gesley for helpful discussions, and K.S. McKay and M.R. Vissers for suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Hite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hite, D.A., Colombe, Y., Wilson, A.C. et al. Surface science for improved ion traps. MRS Bulletin 38, 826–833 (2013). https://doi.org/10.1557/mrs.2013.207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.207