Skip to main content
Log in

Climbing the ladder of density functional approximations

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Kohn–Sham density functional theory is the most widely used method of electronic-structure calculation in materials physics and chemistry because it reduces the many-electron ground-state problem to a computationally tractable self-consistent one-electron problem. Exact in principle for the ground-state energy and electron density, it requires in practice an approximation to the density functional for the exchange-correlation energy. Common approximations fall on the rungs of a ladder, with higher rungs being more complicated to construct and use but potentially more accurate. Each rung of the ladder introduces an additional ingredient to the energy density. From bottom to top, the rungs are (1) the local spin density approximation, (2) the generalized gradient approximation (GGA), (3) the meta-GGA, (4) the hybrid functional, and (5) the generalized random phase approximation. The semi-local rungs (1–3) are important, because they are computationally efficient, they can be constructed non-empirically, they can serve as input to fourth-rung functionals, and the meta-GGA by itself can be accurate for equilibrium properties. Recent and continuing improvements to the meta-GGA are emphasized here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Google Scholar 

  2. R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).

    Google Scholar 

  3. R.M. Dreizler, E.K.U. Gross, Density Functional Theory (Springer, Berlin, 1990).

    Google Scholar 

  4. C. Fiolhais, F. Nogueira, M. Marques, Eds., A Primer in Density Functional Theory (Springer, Berlin, 2003).

  5. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, UK, 2004).

    Google Scholar 

  6. E. Engel, R.M. Dreizler, Density Functional Theory: An Advanced Course (Springer, Berlin, 2011).

    Google Scholar 

  7. “18 Most Cited Physics Papers 1981–2010”; http://tulane.edu/sse/pep/news-and-events/upload/most-cited-papers-1981-2010.pdf.

  8. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).

    Google Scholar 

  9. S. Kurth, J.P. Perdew, Int. J. Quantum Chem. 75, 889 (1999).

    Google Scholar 

  10. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Google Scholar 

  11. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Google Scholar 

  12. D.C. Langreth, J.P. Perdew, Solid State Commun. 17, 1425 (1975); Phys. Rev. B 15, 2884 (1977).

    Google Scholar 

  13. O. Gunnarsson, B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976).

    Google Scholar 

  14. J.P. Perdew, K. Schmidt, in Density Functional Theory and Its Applications to Materials, V.E. Van Doren, K. Van Alsenoy, P. Geerlings, Eds. (American Institute of Physics, Melville, NY, 2001).

    Google Scholar 

  15. U. von Barth, L. Hedin, J. Phys. C: Solid State Phys. 5, 1629 (1972).

    Google Scholar 

  16. D.C. Langreth, J.P. Perdew, Solid State Commun. 31, 567 (1979); Phys. Rev. B 21, 5469 (1980).

    Google Scholar 

  17. D.C. Langreth, M.J. Mehl, Phys. Rev. B 28, 1809 (1983).

    Google Scholar 

  18. A.D. Becke, Phys. Rev. A 38, 3098 (1988).

    Google Scholar 

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Google Scholar 

  20. A.D. Becke, J. Chem. Phys. 109, 2092 (1998).

    Google Scholar 

  21. J.P. Perdew, S. Kurth, A. Zupan, P. Blaha, Phys. Rev. Lett. 82, 2544 (1999).

    Google Scholar 

  22. J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).

    Google Scholar 

  23. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, L.A. Constantin, J. Sun, Phys. Rev. Lett. 103, 026403 (2009).

    Google Scholar 

  24. J. Sun, B. Xiao, A. Ruzsinszky, J. Chem. Phys. 137, 051101 (2012).

    Google Scholar 

  25. J. Sun, R. Haunschild, B. Xiao, I.W. Bulik, G.E. Scuseria, J.P. Perdew, J. Chem. Phys. 138, 044113 (2013).

    Google Scholar 

  26. A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Google Scholar 

  27. J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105, 9982 (1996).

    Google Scholar 

  28. M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999).

    Google Scholar 

  29. C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999).

    Google Scholar 

  30. F. Furche, Phys. Rev. B 64, 195120 (2001).

    Google Scholar 

  31. J. Harl, L. Schimka, G. Kresse, Phys. Rev. B 81, 115126 (2010).

    Google Scholar 

  32. S.-K. Ma, K.A. Brueckner, Phys. Rev. 165, 18 (1968).

    Google Scholar 

  33. P.R. Antoniewicz, L. Kleinman, Phys. Rev. B 31, 6779 (1985).

    Google Scholar 

  34. P.S. Svendsen, U. von Barth, Phys. Rev. B 54, 17392 (1996).

    Google Scholar 

  35. M. Levy, J.P. Perdew, Phys. Rev. A 32, 1010 (1985).

    Google Scholar 

  36. M. Levy, Phys. Rev. A 43, 4637 (1991).

    Google Scholar 

  37. E.H. Lieb, S. Oxford, Int. J. Quantum Chem. 19, 427 (1981).

    Google Scholar 

  38. O. Gunnarsson, B.I. Lundqvist, J.W. Wilkins, Phys. Rev. B 10, 1319 (1974).

    Google Scholar 

  39. J. Jaramillo, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 1068 (2003).

    Google Scholar 

  40. J.P. Perdew, V.N. Staroverov, J. Tao, G.E. Scuseria, Phys. Rev. A 78, 052513 (2008).

    Google Scholar 

  41. S. Moroni, D.M. Ceperley, G. Senatore, Phys. Rev. Lett. 69, 1837 (1992).

    Google Scholar 

  42. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, L.A. Constantin, X. Zhou, O.A. Vydrov, G.E. Scuseria, K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Google Scholar 

  43. R. Armiento, A.E. Mattsson, Phys. Rev. B 62, 10046 (2000).

    Google Scholar 

  44. Z. Wu, R.E. Cohen, Phys. Rev. 73, 235116 (2006).

    Google Scholar 

  45. J. Sun, M. Marsman, A. Ruzsinszky, G. Kresse, J.P. Perdew, Phys. Rev. B 83, 121410 (2011).

    Google Scholar 

  46. P. Hao, J. Sun, G.I. Csonka, P.H.T. Philipsen, J.P. Perdew, Phys. Rev. B 85, 014111 (2012).

    Google Scholar 

  47. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Google Scholar 

  48. E.N. Brothers, A.F. Izmaylov, J.O. Normand, G.E. Scuseria, J. Chem. Phys. 129, 011102 (2008).

    Google Scholar 

  49. Z. Yan, J.P. Perdew, S. Kurth, Phys. Rev. B 61, 16430 (2000).

    Google Scholar 

  50. B.Xiao, J. Sun, A. Ruzsinszky, J. Feng, J.P. Perdew, Phys. Rev. B 86, 094109 (2012).

    Google Scholar 

Download references

Acknowledgments

I would first like to thank the Materials Research Society for this Materials Theory Award, which was endowed by Toh-Ming Lu and Gwo-Ching Wang. I would like to thank the National Science Foundation for supporting my research over a long period. I also want to thank many collaborators; I cannot mention them all but I am especially grateful to Sy Vosko and David Langreth, who introduced me to DFT; they are no longer with us but not forgotten. I should also mention Alex Zunger, Mel Levy, Kieron Burke, Matthias Ernzerhof, Jianmin Tao, Gus Scuseria, and Adrienn Ruzsinszky. This work was supported, in part, by the National Science Foundation under Grant DMR-0854769 and, in part, by NSF EPSCoR and the Louisiana Board of Regents under the LA-SiGMA project (NSF Cooperative Agreement EPS-1003897).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Perdew.

Additional information

The following article is an edited transcript of the MRS Materials Theory Award presentation by John P. Perdew on November 26, 2012, at the Materials Research Society Fall Meeting in Boston. The Award “recognizes exceptional advances made by materials theory to the fundamental understanding of the structure and behavior of materials.”

To view a video of John Perdew’s presentation at the MRS 2012 Fall meeting, visit http://www.mrs.org/f12-mta-video.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perdew, J.P. Climbing the ladder of density functional approximations. MRS Bulletin 38, 743–750 (2013). https://doi.org/10.1557/mrs.2013.178

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.178

Navigation