Skip to main content
Log in

From DNA to genetically evolved technology

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Watson and Crick’s discovery of the structure of DNA in 1953 and the near-simultaneous advent of the first silicon transistor in 1954 spurred parallel historic advances over the following decades in molecular biology and materials technology. As these two expansive fields of research have progressed, important areas of overlap have included the extensive use of materials innovations in biological research, such as in microscopy and measurement systems, while materials research has benefited from efforts to mimic design principles utilized in nature. Until relatively recently, however, the molecular mechanisms that underpin nature’s biological orchestra have remained largely outside the purview of materials research. Now, with new abilities to harness and modify biomolecular and cellular systems, evidence is mounting that biology can be fruitfully utilized to directly engineer technological materials. This article aims to highlight the importance of DNA-driven routes to new materials while providing a brief overview of the genetic engineering platforms that make these routes possible. Emphasis is placed on the fact that it is now possible to genetically evolve materials technologies in a manner that mimics the genetic evolution of biominerals in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. S. Mann, Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford University Press, Oxford, UK, 2001), p. 240.

    Google Scholar 

  2. F.C. Meldrum, H. Colfen, Chem. Rev. 108, 4332 (2008).

    Article  CAS  Google Scholar 

  3. D.E. Morse, Trends Biotechnol. 17, 230 (1999).

    Article  CAS  Google Scholar 

  4. S. Weiner, L. Addadi, J. Mater. Chem. 7, 689 (1997).

    Article  CAS  Google Scholar 

  5. M.B. Dickerson, K.H. Sandhage, R.R. Naik, Chem. Rev. 108, 4935 (2008).

    Article  CAS  Google Scholar 

  6. C.E. Flynn, S.W. Lee, B.R. Peelle, A.M. Belcher, Acta Mater. 51, 5867 (2003).

    Article  CAS  Google Scholar 

  7. J.L. Rouge, B.E. Eaton, D.L. Feldheim, Energy Environ. Sci. 4, 398 (2011).

    Article  CAS  Google Scholar 

  8. M. Sarikaya, C. Tamerler, A.K.Y. Jen, K. Schulten, F. Baneyx, Nat. Mater. 2, 577 (2003).

    Article  CAS  Google Scholar 

  9. X. Dang, H. Yi, M.-H. Ham, J. Qi, D.S. Yun, R. Ladewski, M.S. Strano, P.T. Hammond, A.M. Belcher, Nat. Nanotechnol. 6, 377 (2011).

    Article  CAS  Google Scholar 

  10. Y.J. Lee, H. Yi, W.-J. Kim, K. Kang, D.S. Yun, M.S. Strano, G. Ceder, A.M. Belcher, Science 324, 1051 (2009).

    CAS  Google Scholar 

  11. Y.S. Nam, A.P. Magya, D. Lee, J.-W. Kim, D.S. Yun, H. Park, T.S. Pollom Jr., D.A. Weitz, A.M. Belcher, Nat. Nanotechnol. 5, 340 (2010).

    Article  CAS  Google Scholar 

  12. K.T. Nam, D.W. Kim, P.J. Yoo, C.Y. Chiang, N. Meethong, P.T. Hammond, Y.M. Chiang, A.M. Belcher, Science 312, 885 (2006).

    Article  CAS  Google Scholar 

  13. L.A. Bawazer , M. Izumi, D. Kolodin, J.R. Neilson, B. Schwenzer, D.E. Morse, Proc. Natl. Acad. Sci. U.S.A. 109, E1705 (2012).

    Article  CAS  Google Scholar 

  14. D.G. Gibson, J.I. Glass, C. Lartigue, V.N. Noskov, R.-Y. Chuang, M.A. Algire, G.A. Benders, M.G. Montague, L. Ma, M.M. Moodie, C. Merryman, S. Vashee, R. Krishnakumar, N. Assad-Garcia, C. Andrews-Pfannkoch, E.A. Denisova L. Young, Z.-Q. Qi, T.H. Segall-Shapiro, C.H. Calvey, P.P. Parmar, C.A. Hutchison III, H.O. Smith, C.J. Venter, Science 329, 52 (2010).

    Article  CAS  Google Scholar 

  15. J. Shendure, E.L. Aiden, Nat. Biotechnol. 30,1084 (2012).

    Article  CAS  Google Scholar 

  16. A.A. Cheng, T.K. Lu,in Annual Review of Biomedical Engineering, M.L. Yarmush J.S. Duncan, M.L. Gray, Eds. (Annual Reviews, Palo Alto, CA, 2012), vol. 14, pp. 155–178.

    Google Scholar 

  17. K. Channon, E.H.C. Bromley, D.N. Woolfson, Curr. Opin. Struct. Biol. 18, 491 (2008).

    Article  CAS  Google Scholar 

  18. D.L. Feldheim, B.E. Eaton, ACS Nano 1, 154 (2007).

    Article  CAS  Google Scholar 

  19. D.S. Tawfik, A.D. Griffiths, Nat. Biotechnol. 16, 652 (1998).

    Article  CAS  Google Scholar 

  20. A.D. Griffiths, D.S. Tawfik, Trends Biotechnol. 24, 395 (2006).

    Article  CAS  Google Scholar 

  21. A.M. Belcher, X.H. Wu, R.J. Christensen, P.K. Hansma, G.D. Stucky, D.E. Morse, Nature 381, 56 (1996).

    Article  CAS  Google Scholar 

  22. B.R. Heywood, S. Mann, Adv. Mater. 6, 9 (1994).

    Article  CAS  Google Scholar 

  23. F.C. Meldrum, S. Mann, B.R. Heywood, R.B. Frankel, D.A. Bazylinski, Proc. R. Soc. B-Biol. Sci. 251, 231 (1993).

    Article  Google Scholar 

  24. A. Komeili, Fems Microb. Rev. 36, 232 (2012).

    Article  CAS  Google Scholar 

  25. G.M. Hallegraeff, Plankton: A Microscopic World (CSIRO, Australia, 1988).

    Google Scholar 

  26. M. Hildebrand, Chem. Rev. 108, 4855 (2008).

    Article  CAS  Google Scholar 

  27. J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi, G. Hendler, Nature 412, 819 (2001).

    Article  CAS  Google Scholar 

  28. J.C. Weaver, G.W. Milliron, A. Miserez, K. Evans-Lutterodt, S. Herrera I. Gallana, J.W. Mershon, B. Swanson, P. Zavattieri, E. DiMasi, D. Kisailus Science 336,1275 (2012).

    Article  CAS  Google Scholar 

  29. J. Aizenberg, J.C. Weaver, M.S. Thanawala, VC. Sundar, D.E. Morse P. Fratzl, Science 309, 275 (2005).

    Article  CAS  Google Scholar 

  30. A.R. Studart, Adv. Mater. 24, 5024 (2012).

    Article  CAS  Google Scholar 

  31. J. Aizenberg, MRS Bulletin 35, 323 (2010).

    Article  CAS  Google Scholar 

  32. R.L. Brutchey, D.E. Morse, Chem. Rev. 108, 4915 (2008).

    Article  CAS  Google Scholar 

  33. K.S. Brown C.W. Marean, A.I.R. Herries, Z. Jacobs, C. Tribolo, D. Braun, D.L. Roberts, M.C. Meyer, J. Bernatchez, Science 325, 859 (2009).

    Article  CAS  Google Scholar 

  34. S. Mann, Nature 332, 119 (1988).

    Article  CAS  Google Scholar 

  35. S. Mann, Nat. Mater. 8, 781 (2009).

    Article  CAS  Google Scholar 

  36. S. Mann, G.A. Ozin, Nature 382, 313 (1996).

    Article  CAS  Google Scholar 

  37. R.-Q. Song, H. Coelfen, Adv. Mater. 22, 1301 (2010).

    Article  CAS  Google Scholar 

  38. F. Nudelman, N.A.J.M. Sommerdijk, Angew. Chem. Inter. Ed. 51, 6582 (2012).

    Article  CAS  Google Scholar 

  39. http://www.dnalc.org/.

  40. B. Alberts A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland Science, New York, 2008).

    Google Scholar 

  41. D.R. Hofstadter, Godel, Escher, Bach: An Eternal Golden Braid(Penguin Books, London, England, 2000), pp. 495–549.

    Google Scholar 

  42. M.R. Green, J. Sambrook, Molecular Cloning: A Laboratory Manual (4th ed.) (Cold Spring Harbor Laboratory Press , New York , 2012).

    Google Scholar 

  43. Y.-Y Kim K. Ganesan, P. Yang, A.N. Kulak, S. Borukhin, S. Pechook, L. Ribeiro, R. Kroeger, S.J. Eichhorn, S.P. Armes, B. Pokroy, F.C. Meldrum, Nat. Mater. 10, 890 (2011).

    Article  CAS  Google Scholar 

  44. B. Canton, A. Labno, D. Endy, Nat. Biotechnol. 26, 787 (2008).

    Article  CAS  Google Scholar 

  45. A. Rothe, R.N. Surjadi, B.E. Power, Trends Biotechnol. 24, 587 (2006).

    Article  CAS  Google Scholar 

  46. J.J. Agresti E. Antipov, A.R. Abate, K. Ahn, A.C. Rowat, J.-C. Baret, M. Marquez, A.M. Klibanov, A.D. Griffiths, D.A. Weitz, Proc. Natl. Acad. Sci. U.S.A. 107, 4004 (2010).

    Article  CAS  Google Scholar 

  47. S. Gulati, V Rouilly, X. Niu, J. Chappell, R.I. Kitney, J.B. Edel, P.S. Freemont, A.J. deMello, J. Royal Soc. Interface 6, (2009).

  48. J. Ziman, Ed., Technological Innovation as an Evolutionary Process (Cambridge University Press , Cambridge, UK, 2000).

  49. K.D. Schick, N. Toth, Making Silent Stones Speak: Human Evolution and The Dawn of Technology (Touchstone, New York, 1994).

    Google Scholar 

  50. X.D. Xiang, X.D. Sun, G. Briceno, Y.L. Lou, K.A. Wang, Y.H. Chang, W.G. Wallacefreedman, S.W. Chen, P.G. Schultz., Science 268, 1738 (1995).

    Article  CAS  Google Scholar 

  51. R. Potyrailo K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, H. Lam, ACS Comb. Sci. 13, 579 (2011).

    Article  CAS  Google Scholar 

  52. R.A. Potyrailo, V.M. Mirsky, Chem. Rev. 108, 770 (2008).

    Article  CAS  Google Scholar 

  53. C.J. Richmond H.M. Miras, A.R. de la Oliva, H. Zang, V. Sans, L. Paramonov, C. Makatsoris, R. Inglis, E.K. Brechin, D.-L. Long, L. Cronin, Nat. Chem. 4, 1038 (2012).

    Article  CAS  Google Scholar 

  54. K. Bird, M.J. Sherwin, American Prometheus: The Triumph and Tragedy of J. Robert Oppenheimer (Random House, NY, 2005).

    Google Scholar 

  55. L.A. Gugliotti, D.L. Feldheim, B.E. Eaton, Science 304, 850 (2004).

    Article  CAS  Google Scholar 

  56. F.H. Arnold, G. Georgiou, Eds., Directed Evolution Library Creation: Methods and Protocols (Humana Press, Totowa, NJ, 2003).

  57. S.J. Benkovic, S. Hammes-Schiffer, Science 301, 1196 (2003).

    Article  CAS  Google Scholar 

  58. R. Wolfenden, M.J. Snider, Acc. Chem. Res. 34, 938 (2001).

    Article  CAS  Google Scholar 

  59. D.S. Wilson, J.W. Szostak, Annu. Rev. Biochem. 68, 611 (1999).

    Article  CAS  Google Scholar 

  60. S.R. Whaley, D.S. English, E.L. Hu, P.F. Barbara, A.M. Belcher, Nature 405, 665 (2000).

    Article  CAS  Google Scholar 

  61. C. Tamerler, M. Sarikaya, ACS Nano 3, 1606 (2009).

    Article  CAS  Google Scholar 

  62. R.R. Naik, S.J. Stringer, G. Agarwal, S.E. Jones, M.O. Stone, Nat. Mater. 1, 169 (2002).

    Article  CAS  Google Scholar 

  63. G.P. Smith, Science 228, 1315 (1985).

    Article  CAS  Google Scholar 

  64. C.F. Barbas, A.S. Kang, R.A. Lerner, S.J. Benkovic, Proc. Natl. Acad. Sci. U.S.A. 88, 7978 (1991).

    Article  CAS  Google Scholar 

  65. S. Brown, Proc. Natl. Acad. Sci. U.S.A. 89, 8651 (1992).

    Article  CAS  Google Scholar 

  66. S. Brown, Nat. Biotechnol. 15, 269 (1997).

    Article  CAS  Google Scholar 

  67. R.R. Naik, L.L. Brott, S.J. Clarson, M.O. Stone, J. Nanosci. Nanotechnol. 2, 95 (2002).

    Article  CAS  Google Scholar 

  68. A.D. Griffiths, D.S. Tawfik, EMBO J. 22, 24 (2003).

    Article  CAS  Google Scholar 

  69. M.M. Murr, D.E. Morse, Proc. Natl. Acad. Sci. U.S.A. 102, 11657 (2005).

    Article  CAS  Google Scholar 

  70. G.G. Hammes, J. Biol. Chem. 283, 22337 (2008).

    Article  CAS  Google Scholar 

  71. K. Shimizu, J. Cha, G.D. Stucky, D.E. Morse, Proc. Natl. Acad. Sci. U.S.A. 95, 6234 (1998).

    Article  CAS  Google Scholar 

  72. L.A. Herzenberg, J. Tung, W.A. Moore, L.A. Herzenberg, D.R. Parks, Nat. Immunol. 7, 681 (2006).

    Article  CAS  Google Scholar 

  73. C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Elsevier Science, San Diego, CA, 1989).

    Google Scholar 

  74. C.B. Mao, D.J. Solis, B.D. Reiss, S.T. Kottmann, R.Y. Sweeney, A. Hayhurst, G. Georgiou, B. Iverson, A.M. Belcher, Science 303, 213 (2004).

    Article  CAS  Google Scholar 

  75. N. Park, S.H. Um, H. Funabashi, J. Xu, D. Luo, Nat. Mater. 8, 432 (2009).

    Article  CAS  Google Scholar 

  76. L. Bonetta, Nat. Methods 2, 785 (2005).

    Article  CAS  Google Scholar 

  77. K.M. Esvelt, J.C. Carlson, D.R. Liu, Nature 472, 499 (2011).

    Article  CAS  Google Scholar 

  78. W.C. Ratcliff, R.F. Denison, M. Borrello, M. Travisano, Proc. Natl. Acad. Sci. U.S.A. 109, 1595 (2012).

    Article  CAS  Google Scholar 

  79. A.S. Khalil, J.J. Collins, Nat. Rev. Genet. 11, 367 (2010).

    Article  CAS  Google Scholar 

  80. E.S. Lander et al., Nature 409, 860 (2001).

    Article  CAS  Google Scholar 

  81. J.C. Venter et al., Science 291, 1304 (2001).

    Article  CAS  Google Scholar 

  82. J.M. Rothberg et al., Nature 475, 348 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Daniel Morse and Fiona Meldrum for invaluable guidance and gratefully acknowledges helpful discussions with colleagues at UC Santa Barbara and the University of Leeds. Many of the perspectives described above emerged from dissertation research conducted in the Morse Lab at UCSB, supported by the US Department of Energy Grant DEFG03–02ER46006. The author also thanks the UK Engineering and Physical Sciences Research Council for current funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukmaan A. Bawazer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bawazer, L.A. From DNA to genetically evolved technology. MRS Bulletin 38, 509–518 (2013). https://doi.org/10.1557/mrs.2013.133

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.133

Navigation