Skip to main content
Log in

Condensation heat transfer on superhydrophobic surfaces

  • Interfacial materials with special wettability
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Condensation is a phase change phenomenon often encountered in nature, as well as used in industry for applications including power generation, thermal management, desalination, and environmental control. For the past eight decades, researchers have focused on creating surfaces allowing condensed droplets to be easily removed by gravity for enhanced heat transfer performance. Recent advancements in nanofabrication have enabled increased control of surface structuring for the development of superhydrophobic surfaces with even higher droplet mobility and, in some cases, coalescence-induced droplet jumping. Here, we provide a review of new insights gained to tailor superhydrophobic surfaces for enhanced condensation heat transfer considering the role of surface structure, nucleation density, droplet morphology, and droplet dynamics. Furthermore, we identify challenges and new opportunities to advance these surfaces for broad implementation in thermofluidic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. A.R. Parker, C.R. Lawrence, Nature 414, 33 (2001).

    CAS  Google Scholar 

  2. Y.M. Zheng, H. Bai, Z.B. Huang, X.L. Tian, F.Q. Nie, Y. Zhao, J. Zhai, L. Jiang, Nature 463, 640 (2010).

    CAS  Google Scholar 

  3. B. Bhushan, Philos. Trans. R. Soc. London, Ser. A 367, 1445 (2009).

    CAS  Google Scholar 

  4. Y.T. Cheng, D.E. Rodak, Appl. Phys. Lett. 86 (2005).

  5. B. Mockenhaupt, H.J. Ensikat, M. Spaeth, W. Barthlott, Langmuir 24, 13591 (2008).

    CAS  Google Scholar 

  6. J.M. Beer, Prog. Energy Combust. Sci. 33, 107 (2007).

    Google Scholar 

  7. T.B. Peters, M. McCarthy, J. Allison, F.A. Dominguez-Espinosa, D. Jenicek, H.A. Kariya, W.L. Staats, J.G. Brisson, J.H. Lang, E.N. Wang, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 1637 (2012).

    Google Scholar 

  8. A.D. Khawaji, I.K. Kutubkhanah, J.M. Wie, Desalination 221, 47 (2008).

    CAS  Google Scholar 

  9. T. Humplik, J. Lee, S.C. O’Hern, B.A. Fellman, M.A. Baig, S.F. Hassan, M.A. Atieh, F. Rahman, T. Laoui, R. Karnik, E.N. Wang, Nanotechnology 22, 292001 (2011).

    CAS  Google Scholar 

  10. L. Perez-Lombard, J. Ortiz, C. Pout, Energy Build 40, 394 (2008).

    Google Scholar 

  11. B.Z. Li, R.M. Yao, Renewable Energy 34, 1994 (2009).

    Google Scholar 

  12. B. von Elsner, D. Briassoulis, D. Waaijenberg, A. Mistriotis, C. von Zabeltitz, J. Gratraud, G. Russo, R. Suay-Cortes, J. Agric. Eng. Res. 75, 1 (2000).

    Google Scholar 

  13. D. Kaschiev, Nucleation: Basic Theory With Applications (Butterworth-Heinemann, Oxford, 2000).

    Google Scholar 

  14. W.Z. Nusselt, Z. Ver. Dtsch. Ing. 60, 541 (1916).

    Google Scholar 

  15. P.J. Marto, D.J. Looney, J.W. Rose, A.S. Wanniarachchi, Int. J. Heat Mass Trans. 29, 1109 (1986).

    CAS  Google Scholar 

  16. R.W.I. Bonner, in Proceedings of the International Heat Transfer Conference (ASME, Washington, DC, 2010).

    Google Scholar 

  17. S. Vemuri, K.J. Kim, B.D. Wood, S. Govindaraju, T.W. Bell, Appl. Therm. Eng. 26, 421 (2006).

    CAS  Google Scholar 

  18. S. Vemuri, K.J. Kim, Int. J. Heat Mass Trans. 49, 649 (2006).

    CAS  Google Scholar 

  19. A.K. Das, H.P. Kilty, P.J. Marto, G.B. Andeen, A. Kumar, J. Heat Trans. 122, 278 (2000).

    CAS  Google Scholar 

  20. R.A. Erb, E. Thelen, Ind. Eng. Chem. 57, 49 (1965).

    CAS  Google Scholar 

  21. D.G. Wilkins, L.A. Bromley, S.M. Read, AlChE J. 19, 119 (1973).

    CAS  Google Scholar 

  22. D.W. Woodruff, J.W. Westwater, Int. J. Heat Mass Trans. 22, 629 (1979).

    CAS  Google Scholar 

  23. D. Beysens, C.R. Phys. 7, 1082 (2006).

    CAS  Google Scholar 

  24. D. Beysens, A. Steyer, P. Guenoun, D. Fritter, C.M. Knobler, Phase Transitions 31, 219 (1991).

    CAS  Google Scholar 

  25. D. Fritter, C.M. Knobler, D.A. Beysens, Phys. Rev. A 43, 2858 (1991).

    CAS  Google Scholar 

  26. E. Schmidt, W. Schurig, W. Sellschopp, Forsch. Ingenieurwes. 1, 53 (1930).

    Google Scholar 

  27. H.Y. Kim, H.J. Lee, B.H. Kang, J. Colloid Interface Sci. 247, 372 (2002).

    CAS  Google Scholar 

  28. P. Dimitrakopoulos, J.J.L. Higdon, J. Fluid Mech. 395, 181 (1999).

    CAS  Google Scholar 

  29. J.B. Boreyko, C.H. Chen, Phys. Rev. Lett. 103, 184501 (2009).

    Google Scholar 

  30. J.W. Rose, Proc. Inst. Mech. Eng., Part A: J. Power Eng. 216, 115 (2002).

    CAS  Google Scholar 

  31. B.S. Sikarwar, S. Khandekar, S. Agrawal, S. Kumar, K. Muralidhar, Heat Trans. Eng. 33, 301 (2012).

    CAS  Google Scholar 

  32. A. Lafuma, D. Quéré, Nat. Mater. 2, 457 (2003).

    CAS  Google Scholar 

  33. N.A. Patankar, Soft Matter 6, 1613 (2010).

    CAS  Google Scholar 

  34. L. Bocquet, E. Lauga, Nat. Mater. 10, 334 (2011).

    CAS  Google Scholar 

  35. S.H. Kang, N. Wu, A. Grinthal, J. Aizenberg, Phys. Rev. Lett. 107, 177802 (2011).

    Google Scholar 

  36. T. Young, Philos. Trans. R. Soc. London 95, 65 (1805).

    Google Scholar 

  37. R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).

    CAS  Google Scholar 

  38. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944).

    CAS  Google Scholar 

  39. L.C. Gao, A.Y. Fadeev, T.J. McCarthy, MRS Bull. 33, 747 (2008).

    CAS  Google Scholar 

  40. D. Quéré, Annu. Rev. Mater. Res. 38, 71 (2008).

    Google Scholar 

  41. C. Dorrer, J. Ruhe, Soft Matter 5, 51 (2009).

    CAS  Google Scholar 

  42. P. Roach, N.J. Shirtcliffe, M.I. Newton, Soft Matter 4, 224 (2008).

    CAS  Google Scholar 

  43. S. Moulinet, D. Bartolo, Eur. Phys. J. E 24, 251 (2007).

    CAS  Google Scholar 

  44. R.D. Narhe, D.A. Beysens, Europhys. Lett. 75, 98 (2006).

    CAS  Google Scholar 

  45. R.D. Narhe, D.A. Beysens, Phys. Rev. Lett. 93, 076103 (2004).

    CAS  Google Scholar 

  46. R.D. Narhe, D.A. Beysens, Langmuir 23, 6486 (2007).

    CAS  Google Scholar 

  47. N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, E.N. Wang, Nano Lett. 13, 179 (2013).

    CAS  Google Scholar 

  48. C. Dorrer, J. Ruhe, Langmuir 23, 3820 (2007).

    CAS  Google Scholar 

  49. K.A. Wier, T.J. McCarthy, Langmuir 22, 2433 (2006).

    CAS  Google Scholar 

  50. C.H. Chen, Q.J. Cai, C.L. Tsai, C.L. Chen, G.Y. Xiong, Y. Yu, Z. Ren, Appl. Phys. Lett. 90, 173108 (2007).

    Google Scholar 

  51. C. Dorrer, J. Ruhe, Adv. Mater. 20, 159 (2008).

    CAS  Google Scholar 

  52. X. Chen, J. Wu, R. Ma, M. Hua, N. Koratkar, S. Yao, Z. Wang, Adv. Funct. Mater. 21, 4617 (2011).

    CAS  Google Scholar 

  53. K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. McKinley, K.K. Gleason, Nano Lett. 3, 1701 (2003).

    CAS  Google Scholar 

  54. K. Rykaczewski, W.A. Osborn, J. Chinn, M.L. Walker, J.H.J. Scott, W. Jones, C. Hao, S. Yaod, Z. Wang, Soft Matter 8, 8786 (2012).

    CAS  Google Scholar 

  55. R. Enright, N. Miljkovic, A. Al-Obeidi, C.V. Thompson, E.N. Wang, Langmuir 40, 14424 (2012).

    Google Scholar 

  56. D.M. Anderson, M.K. Gupta, A.A. Voevodin, C.N. Hunter, S.A. Putnam, V.V. Tsukruk, A.G. Fedorov, ACS Nano 6, 3262 (2012).

    CAS  Google Scholar 

  57. K.K. Varanasi, T. Deng, in 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems 1 – 5 (Los Vegas, NV, 2010).

  58. K.K. Varanasi, M. Hsu, N. Bhate, W.S. Yang, T. Deng, Appl. Phys. Lett. 95, 094101 (2009).

    Google Scholar 

  59. E.K. Her, T.J. Ko, K.R. Lee, K.H. Oh, M.W. Moon, Nanoscale 4, 2900 (2012).

    CAS  Google Scholar 

  60. S.M. Ji, I.Y. Kim, E.H. Kim, J.U. Jung, W.D. Kim, H.E. Lim, J. Korean Soc. Precis. Eng. 29, 19 (2012).

    CAS  Google Scholar 

  61. A. Lee, M.W. Moon, H. Lim, W.D. Kim, H.Y. Kim, Langmuir 28, 10183 (2012).

    CAS  Google Scholar 

  62. S.C. Thickett, C. Neto, A.T. Harris, Adv. Mater. 23, 3718 (2011).

    CAS  Google Scholar 

  63. C.W. Yao, T.P. Garvin, J.L. Alvarado, A.M. Jacobi, B.G. Jones, C.P. Marsh, Appl. Phys. Lett. 101, 111605 (2012).

    Google Scholar 

  64. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chem. Rev. 105, 1103 (2005).

    CAS  Google Scholar 

  65. G.P. Lopez, H.A. Biebuyck, C.D. Frisbie, G.M. Whitesides, Science 260, 647 (1993).

    CAS  Google Scholar 

  66. D. Mandler, I. Turyan, Electroanalysis 8, 207 (1996).

    CAS  Google Scholar 

  67. N. Miljkovic, R. Enright, E.N. Wang, ACS Nano 6, 1776 (2012).

    CAS  Google Scholar 

  68. K. Rykaczewski, Langmuir 28, 7720 (2012).

    CAS  Google Scholar 

  69. S. Kim, K.J. Kim, J. Heat Transfer 133, 081502 (2011).

    Google Scholar 

  70. M. AbuOrabi, Int. J. Heat Mass Trans. 41, 81 (1998).

    CAS  Google Scholar 

  71. S. Anand, S.Y. Son, Langmuir 26, 17100 (2010).

    CAS  Google Scholar 

  72. L. Cao, A.K. Jones, V.K. Sikka, J.Z. Wu, D. Gao, Langmuir 25, 12444 (2009).

    CAS  Google Scholar 

  73. J.W. Rose, L.R. Glicksman, Int. J. Heat Mass Trans. 16, 411 (1973).

    CAS  Google Scholar 

  74. R.D. Narhe, M.D. Khandkar, P.B. Shelke, A.V. Limaye, D.A. Beysens, Phys. Rev. E 80, 031604 (2009).

    CAS  Google Scholar 

  75. C. Dietz, K. Rykaczewski, A.G. Fedorov, Y. Joshi, Appl. Phys. Lett. 97, 033104 (2010).

    Google Scholar 

  76. N. Miljkovic, R. Enright, E.N. Wang, presented at the 3rd Micro/Nanoscale Heat & Mass Transfer International Conference (Atlanta, GA, 2012).

  77. M. Nosonovsky, B. Bhushan, Ultramicroscopy 107, 969 (2007).

    CAS  Google Scholar 

  78. M. McCarthy, K. Gerasopoulos, R. Enright, J.N. Culver, R. Ghodssi, E.N. Wang, Appl. Phys. Lett. 100, 1 (2012).

    Google Scholar 

  79. B. Bhushan, M. Nosonovsky, Nano Lett. 7, 2633 (2007).

    Google Scholar 

  80. B. Bhushan, Y.C. Jung, ACS Nano 3, 4155 (2009).

    Google Scholar 

  81. B. Pokroy, S.H. Kang, L. Mahadevan, J. Aizenberg, Science 323, 237 (2009).

    CAS  Google Scholar 

  82. T.Q. Liu, W. Sun, X.Y. Sun, H.R. Ai, Langmuir 26, 14835 (2010).

    CAS  Google Scholar 

  83. T.Q. Liu, W. Sun, X.Y. Sun, H.R. Ai, Colloids Surf., A 414, 366 (2012).

    CAS  Google Scholar 

  84. N. Miljkovic, R. Enright, E.N. Wang, J. Heat Transfer (2012), in press.

  85. J. Feng, Y. Pang, Z. Qin, R. Ma, S. Yao, ACS Appl. Mater. Interfaces 4, 6618 (2012).

    CAS  Google Scholar 

  86. R. Enright, N. Dou, N. Miljkovic, Y. Nam, E.N. Wang, presented at the 3rd Micro/Nanoscale Heat & Mass Transfer International Conference (Atlanta, GA, 2012).

  87. C. Dietz, K. Rykaczewski, A. Fedorov, Y. Joshi, J. Heat Transfer 132, 080904 (2010).

    Google Scholar 

  88. J.B. Boreyko, P.C. Collier, ACS Nano 7, 1618 (2013)

    CAS  Google Scholar 

  89. K. Rykaczewski, J.H.J. Scott, S. Rajauria, J. Chinn, A.M. Chinn, W. Jones, Soft Matter 7, 8749 (2011).

    CAS  Google Scholar 

  90. K. Rykaczewski, A.T. Paxson, S. Anand, X. Chen, Z. Wang, K.K. Varanasi, Langmuir 29, 881 (2013).

    CAS  Google Scholar 

  91. K. Rykaczewski, J. Chinn, M.L. Walker, J.H.J. Scott, A. Chinn, W. Jones, ACS Nano 5, 9746 (2011).

    CAS  Google Scholar 

  92. R.D. Narhe, W. Gonzalez-Vinas, D.A. Beysens, Appl. Surf. Sci. 256, 4930 (2010).

    CAS  Google Scholar 

  93. D. Torresin, M.K. Tiwari, D. Del Col, D. Poulikakos, Langmuir 29, 840 (2013).

    CAS  Google Scholar 

  94. J. Feng, Z.Q. Qin, S.H. Yao, Langmuir 28, 6067 (2012).

    CAS  Google Scholar 

  95. X.T. Zhang, M. Jin, Z.Y. Liu, S. Nishimoto, H. Saito, T. Murakami, A. Fujishima, Langmuir 22, 9477 (2006).

    CAS  Google Scholar 

  96. X.T. Zhang, M. Jin, Z.Y. Liu, D.A. Tryk, S. Nishimoto, T. Murakami, A. Fujishima, J. Phys. Chem. C 111, 14521 (2007).

    CAS  Google Scholar 

  97. M. He, X. Zhou, X.P. Zeng, D.P. Cui, Q.L. Zhang, J. Chen, H.L. Li, J.J. Wang, Z.X. Cao, Y.L. Song, L. Jiang, Soft Matter, 8, 6680 (2012).

    CAS  Google Scholar 

  98. Y. Nam, S. Sharratt, C. Byon, S.J. Kim, Y.S. Ju, J. Microelectromech. Syst. 19, 581 (2010).

    CAS  Google Scholar 

  99. Y. Nam, Y. Sungtaek, J. Adhes. Sci. Technol. 1 (2012).

  100. J.W. Rose, Int. J. Heat Mass Trans. 10, 755 (1967).

    CAS  Google Scholar 

  101. J.B. Boreyko, Y.J. Zhao, C.H. Chen, Appl. Phys. Lett. 99, 234105 (2011).

    Google Scholar 

  102. J. Cheng, A. Vandadi, C.L. Chen, Appl. Phys. Lett. 101, 131909 (2012).

    Google Scholar 

  103. J.B. Boreyko, C.H. Chen, Int. J. Heat Mass Transf. 61, 409 (2013).

    CAS  Google Scholar 

  104. X.H. Ma, X.D. Zhou, Z. Lan, Y.M. Li, Y. Zhang, Int. J. Heat Mass Trans. 51, 1728 (2008).

    CAS  Google Scholar 

  105. J.W. Rose, Int. J. Heat Mass Trans. 23, 539 (1980).

    Google Scholar 

  106. G.P. Thiel, J.H. Lienhard, Int. J. Heat Mass Trans. 55, 5133 (2012).

    Google Scholar 

  107. H.C. Barshilia, A. Chaudhary, P. Kumar, N.T. Manikandanath, Nanomaterials 2, 65 (2012).

    CAS  Google Scholar 

  108. G. Azimi, R. Dhiman, H.K. Kwon, A.T. Paxson, K.K. Varanasi, Nat. Mater. (2013), doi: 10.1038/nmat3545.

  109. A. Lafuma, D. Quéré, Europhys. Lett. 96, 56001 (2011).

    Google Scholar 

  110. T.S. Wong, S.H. Kang, S.K.Y. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg, Nature 477, 443 (2011).

    CAS  Google Scholar 

  111. S. Anand, A.T. Paxson, R. Dhiman, D.J. Smith, K.K. Varanasi, ACS Nano 6, 10122 (2012).

    CAS  Google Scholar 

  112. P. Kim, T.S. Wong, J. Alvarenga, M.J. Kreder, W.E. Adorno-Martinez, J. Aizenberg, ACS Nano 6, 6569 (2012).

    CAS  Google Scholar 

  113. P.W. Wilson, W. Lu, H. Xu, P. Kim, M.J. Kreder, J. Alvarenga, J. Aizenberg, Phys. Chem. Chem. Phys. 15, 581 (2013).

    CAS  Google Scholar 

  114. A.K. Epstein, T.S. Wong, R.A. Belisle, E.M. Boggs, J. Aizenberg, Proc. Natl. Acad. Sci. U.S.A. 109, 13182 (2012).

    CAS  Google Scholar 

  115. D.J. Smith, R. Dhiman, S. Anand, E. Reza-Garduno, R.E. Cohen, G.H. McKinley, K.K. Varanasi, Soft Matter 9, 1772 (2013).

    CAS  Google Scholar 

  116. A. Tuteja, W.J. Choi, G.H. McKinley, R.E. Cohen, M.F. Rubner, MRS Bull. 33, 752 (2008).

    CAS  Google Scholar 

  117. X. Deng, L. Mammen, H.J. Butt, D. Vollmer, Science 335, 67 (2012).

    CAS  Google Scholar 

  118. S. Nishimoto, B. Bhushan, RSC Adv. 3, 671 (2013).

    CAS  Google Scholar 

  119. X.J. Liu, Y.M. Liang, F. Zhou, W.M. Liu, Soft Matter 8, 2070 (2012).

    Google Scholar 

  120. D. Stokes, Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM) (New York, Wiley, 2008).

    Google Scholar 

  121. N.A. Stelmashenko, J.P. Craven, A.M. Donald, E.M. Terentjev, B.L. Thiel, J. Microsc. 204, 172 (2001).

    CAS  Google Scholar 

  122. M.P. Rossi, Y. Gogotsi, K.G. Kornev, Langmuir 25, 2804 (2009).

    CAS  Google Scholar 

  123. N. Miljkovic, R. Enright, S.C. Maroo, H.J. Cho, E.N. Wang, J. Heat Transfer 133, 080903 (2011).

    Google Scholar 

  124. N. Miljkovic, R. Enright, E.N. Wang, J. Heat Transfer 134 (8), 080902 (2012).

    Google Scholar 

  125. Z. Barkay, Appl. Phys. Lett. 96, 183109 (2010).

    Google Scholar 

  126. B. Bhushan, Y.C. Jung, J. Microsc. 229, 127 (2008).

    Google Scholar 

  127. K. Rykaczewski, J.H.J. Scott, ACS Nano 5, 5962 (2011).

    CAS  Google Scholar 

  128. K. Rykaczewski, J.H.J. Scott, A.G. Fedorov, Appl. Phys. Lett. 98, 093106 (2011).

    Google Scholar 

  129. S. Wiedemann, A. Plettl, P. Walther, P. Ziemann, Langmuir 29, 913 (2013).

    CAS  Google Scholar 

  130. K. Rykaczewski, T. Landin, M.L. Walker, J.H.J. Scott, K.K. Varanasi, ACS Nano 6, 9326 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding support from the MIT S3TEC Center, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences, Office of Naval Research Young Investigator Award, and Air Force Office of Scientific Research Young Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Miljkovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miljkovic, N., Wang, E.N. Condensation heat transfer on superhydrophobic surfaces. MRS Bulletin 38, 397–406 (2013). https://doi.org/10.1557/mrs.2013.103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.103

Navigation