Skip to main content
Log in

Variable charge many-body interatomic potentials

  • Three decades of many-body potentials in materials research
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Recent developments in reactive potentials for the simulation of complex bonding and complex chemistry are reviewed. In particular, the reactive force field and charged optimized many-body methods are two paradigms that enable atoms to autonomously determine their charge state and the nature of their local bonding environments. The capabilities of these methods are illustrated by examples involving ionic-covalent systems, a metal-covalent system, a high-k dielectric gate stack, and the interaction of water with an oxide. Prospects for future development and applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. D.S. Sholl, J.A. Steckel, Density Functional Theory: A Practical Introduction (Wiley, Hoboken, NJ, 2009).

    Google Scholar 

  2. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, J. Phys. Chem. A 105, 9396 (2001).

    Google Scholar 

  3. J. Yu, S.B. Sinnott, S.R. Phillpot, Phys. Rev. B 75, 085311 (2007).

    Google Scholar 

  4. T.-R. Shan, B.D. Devine, J.M. Hawkins, A. Asthagiri, S.R. Phillpot, S.B. Sinnott, Phys. Rev. B 82, 235302 (2010).

    Google Scholar 

  5. N.L. Allinger, Y.H. Yuh, J.-H. Lii, J. Am. Chem. Soc. 111, 8551 (1989).

    Google Scholar 

  6. W.D. Cornell, P. Cieplak, C. Bayly, I.R. Gould, K.M.J. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, J. Am. Chem. Soc. 117, 5179 (1995).

    Google Scholar 

  7. H.-P. Chen, R.K. Kalia, E. Kaxiras, G. Lu, A. Nakano, K.I. Nomura, A.C.T. van Duin, P. Vashishta, Z. Yuan, Phys. Rev. Lett. 104, 155502 /1 (2010).

    Google Scholar 

  8. K.I. Nomura, R. Kalia, A. Nakano, P. Vashishta, A.C.T. van Duin, W.A. Goddard, Phys. Rev. Lett. 99, 148303 (2007).

    Google Scholar 

  9. A. Nakano, R.K. Kalia, K.I. Nomura, A. Sharma, P. Vashishta, F. Shimojo, A.C.T. van Duin, W.A. Goddard, R. Biswas, D. Srivastava, Comput. Mater. Sci. 38, 642 (2007).

    Google Scholar 

  10. S.V. Zybin, W.A. Goddard, P. Xu, A.C.T. van Duin, A.P. Thompson, Appl. Phys. Lett. 96, 081918 /1 (2010).

    Google Scholar 

  11. K. Chenoweth, A.C.T. van Duin, W.A. Goddard, J. Phys. Chem. A 112, 1040 (2008).

    Google Scholar 

  12. K. Chenoweth, A.C.T. van Duin, P. Persson, M.J. Cheng, J. Oxgaard, W.A. Goddard, J. Phys. Chem. C 112, 14645 (2008).

    Google Scholar 

  13. M. Russo, A.C.T. van Duin, Nucl. Instrum. Methods Phys. Res., Sect. B 269, 1549 (2011).

    Google Scholar 

  14. B. Devine, T.-R. Shan, Y.-T. Cheng, A.J.H. McGaughey, M. Lee, S.R. Phillpot, S.B. Sinnott, Phys. Rev. B 84, 125308 (2011).

    Google Scholar 

  15. W.J. Mortier, S.K. Ghosh, S. Shankar, J. Am. Chem. Soc. 108, 4315 (1986).

    Google Scholar 

  16. A.K. Rappe, W.A. Goddard III, J. Phys. Chem. 95, 3358 (1991).

    Google Scholar 

  17. F.H. Streitz, J.W. Mintmire, Phys. Rev. B 50, 11996 (1994).

    Google Scholar 

  18. X.W. Zhou, H.N.G. Wadley, J.-S. Filhol, M.N. Neurock, Phys. Rev. B 69, 035402 (2004).

    Google Scholar 

  19. E. de Vos Burchart, V.A. Verheij, H. van Bekkum, H.B. van de Graaf, Zeolites 12, 183 (1992).

    Google Scholar 

  20. E. de Vos Burchart, PhD thesis, Delft University of Technology, The Netherlands (1992).

  21. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, UK, 1989).

    Google Scholar 

  22. B.S. Thomas, N.A. Marks, V.D. Begg, Phys. Rev. B 69, 144122 (2004).

    Google Scholar 

  23. M.R. Weismiller, A.C.T. van Duin, J. Lee, R.A. Yetter, J. Phys. Chem. A 114, 5485 (2010).

    Google Scholar 

  24. S. Agrawalla, A.C.T. van Duin, J. Phys. Chem. A 115, 960 (2011).

    Google Scholar 

  25. L. Zhang, S.V. Zybin, A.C.T. van Duin, W.A. Goddard, J. Energetic Mater. 28, 92 (2010).

    Google Scholar 

  26. L.Z. Zhang, S.V. Zybin, A.C.T. van Duin, S. Dasgupta, W.A. Goddard, E.M. Kober, J. Phys. Chem. A 113, 10619 (2009).

    Google Scholar 

  27. L.Z. Zhang, A.C.T. van Duin, S.V. Zybin, W.A. Goddard, J. Phys. Chem. B 113, 10770 (2009).

    Google Scholar 

  28. A.C.T. van Duin, Y. Zeiri, F. Dubnikova, R. Kosloff, W.A. Goddard, J. Am. Chem. Soc. 127, 11053 (2005).

    Google Scholar 

  29. A. Strachan, E.M. Kober, A.C.T. van Duin, J. Oxgaard, W.A. Goddard, J. Chem. Phys. 122, 54502 (2005).

    Google Scholar 

  30. A. Strachan, A.C.T. van Duin, D. Chakraborty, S. Dasgupta, W.A. Goddard, Phys. Rev. Lett. 91, 098301 (2003).

    Google Scholar 

  31. O. Rahaman, A.C.T. van Duin, W.A. Goddard, D.J. Doren, J. Phys. Chem. B 115, 249 (2011).

    Google Scholar 

  32. O. Rahaman, A.C.T. van Duin, V.S. Bryantsev, J.E. Mueller, S.D. Solares, W.A. Goddard, D.J. Doren, J. Phys. Chem. A 114, 3556 (2010).

    Google Scholar 

  33. R. Zhu, F. Janetzko, Y. Zhang, A.C.T. van Duin, W.A. Goddard, D.R. Salahub, Theor. Chem. Acc. 120, 479 (2008).

    Google Scholar 

  34. R.M. Abolfath, A.C.T. van Duin, P. Biswas, T. Brabec, J. Phys. Chem. A 115, 11045 (2011).

    Google Scholar 

  35. M. Russo, R. Li, M. Mench, A.C.T. van Duin, Int. J. Hydrogen Energy 36, 5828 (2011).

    Google Scholar 

  36. D. Raymand, A.C.T. van Duin, W.A. Goddard, K. Hermansson, D. Spangberg, J. Phys. Chem. A 115, 8573 (2011).

    Google Scholar 

  37. A.C.T. van Duin, V.S. Bryantsev, M.S. Diallo, W.A. Goddard, O. Rahaman, D.J. Doren, D. Raymand, K. Hermansson, J. Phys. Chem. A 114, 9507 (2010).

    Google Scholar 

  38. D. Raymand, A.C.T. van Duin, D. Spangberg, W.A. Goddard, K. Hermansson, Surf. Sci. 604, 741 (2010).

    Google Scholar 

  39. J.C. Fogarty, H.M. Aktulga, A.Y. Grama, A.C.T. van Duin, S.A. Pandit, J. Chem. Phys. 132, 174704 /1 (2010).

    Google Scholar 

  40. M. Aryanpour, A.C.T. van Duin, J.D. Kubicki, J. Phys. Chem. A 114, 6298 (2010).

    Google Scholar 

  41. S.G. Srinivasan, A.C.T. van Duin, J. Phys. Chem. A 115, 13269 (2011).

    Google Scholar 

  42. J.P. Mathews, A.C.T. van Duin, A.L. Chaffee, Fuel Process. Technol. 92, 718 (2011).

    Google Scholar 

  43. A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Nat. Chem. 2, 581 (2010).

    Google Scholar 

  44. A. Bagri, R. Grantab, N.Y. Medhekar, V.B. Shenoy, J. Phys. Chem. C 114, 12053 (2010).

    Google Scholar 

  45. E. Salmon, A.C.T. van Duin, F. Lorant, P.M. Marquaire, W.A. Goddard, Org. Geochem. 40, 416 (2009).

    Google Scholar 

  46. E. Salmon, A.C.T. van Duin, F. Lorant, P.M. Marquaire, W.A. Goddard, Org. Geochem. 40, 1195 (2009).

    Google Scholar 

  47. K. Chenoweth, A.C.T. van Duin, S. Dasgupta, W.A. Goddard, J. Phys. Chem. A 113, 1740 (2009).

    Google Scholar 

  48. W.A. Goddard, J.E. Mueller, K. Chenoweth, A.C.T. van Duin, Catal. Today 157, 71 (2010).

    Google Scholar 

  49. K. Chenoweth, A.C.T. van Duin, W.A. Goddard, Angew. Chem. Int. Ed. 48, 7630 (2009).

    Google Scholar 

  50. W.A. Goddard, K. Chenoweth, S. Pudar, A.C.T. van Duin, M.J. Cheng, Top. Catal. 50, 2 (2008).

    Google Scholar 

  51. E.C. Neyts, A.C.T. van Duin, A. Bogaerts, J. Am. Chem. Soc. 133, 17225 (2011).

    Google Scholar 

  52. P. Valentini, T.E. Schwartzentruber, I. Cozmuta, J. Chem. Phys. 133, 084703 /1 (2010).

    Google Scholar 

  53. E.C. Neyts, Y. Shibuta, A.C.T. van Duin, A. Bogaerts, ACS Nano 4, 6665 (2010).

    Google Scholar 

  54. J.E. Mueller, A.C.T. van Duin, W.A. Goddard, J. Phys. Chem. C 114, 20028 (2010).

    Google Scholar 

  55. J.E. Mueller, A.C.T. van Duin, W.A. Goddard, J. Phys. Chem. C 114, 5675 (2010).

    Google Scholar 

  56. J.E. Mueller, A.C.T. van Duin, W.A. Goddard, J. Phys. Chem. C 114, 4939 (2010).

    Google Scholar 

  57. A.M. Kamat, A.C.T. van Duin, A. Yakovlev, J. Phys. Chem. A 114, 12561 (2010).

    Google Scholar 

  58. T.-R. Shan, B.D. Devine, T.W. Kemper, S.B. Sinnott, S.R. Phillpot, Phys. Rev. B 81, 125328 (2010).

    Google Scholar 

  59. T.-R. Shan, B.D. Devine, S.B. Sinnott, S.R. Phillpot, Phys. Rev. B 83, 115327 (2011).

    Google Scholar 

  60. J. Tersoff, Phys. Rev. B 38, 9902 (1988).

    Google Scholar 

  61. A.C.T. van Duin, A. Strachan, S. Stewman, Q.S. Zhang, X. Xu, W.A. Goddard, J. Phys. Chem. A 107, 3803 (2003).

    Google Scholar 

  62. G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 36, 254 (2006).

    Google Scholar 

  63. P.G. Coombs, J.F. Denatale, P.J. Hood, D.K. McElfresh, R.S. Wortman, J.F. Shackelford, Philos. Mag. B 51, L39 (1985).

    Google Scholar 

  64. E.C. Neyts, U. Khalilov, G. Portois, A.C.T. van Duin, J. Phys. Chem. C 115, 4818 (2011).

    Google Scholar 

  65. http://www.intel.com, http://www.realworldtech.com.

  66. G.M. Rignanese, J. Phys.: Condens. Matter 17, R357 (2005).

    Google Scholar 

  67. X.Y. Zhao, D. Vanderbilt, Phys. Rev. B 65, 233206 (2002).

    Google Scholar 

  68. E.P. Gusev, C. Cabral, M. Copel, C. D’Emic, M. Gribelyuk, Microelectron. Eng. 69, 145 (2003).

    Google Scholar 

  69. R.C. Weast (Ed.), Handbook of Chemistry and Physics (Chemical Rubber, Cleveland, OH, 1969).

    Google Scholar 

  70. A.S. Foster, F.L. Gejo, A.L. Shluger, R.M. Nieminen, Phys. Rev. B 65, 174117 (2002).

    Google Scholar 

  71. M. Ritala, M. Leskela, L. Niinisto, T. Prohaska, G. Friedbacher, M. Grasserbauer, Thin Solid Films 250, 72 (1994).

    Google Scholar 

  72. S.V. Ushakov, A. Navrotsky, Y. Yang, S. Stemmer, K. Kukli, M. Ritala, M.A. Leskelä, P. Fejes, A. Demkov, C. Wang, B.-Y. Nguyen, D. Triyoso, P. Tobin, Phys. Status Solidi B 241, 2268 (2004).

    Google Scholar 

  73. Q. Fang, J.Y. Zhang, Z. Wang, M. Modreanu, B.J. O’Sullivan, P.K. Hurley, T.L. Leedham, D. Hywel, M.A. Audier, C. Jimenez, J.-P. Senateur, I.W. Boyd, Thin Solid Films 453, 203 (2004).

    Google Scholar 

  74. X. Luo, A.A. Demkov, D. Triyoso, P. Fejes, R. Gregory, S. Zollner, Phys. Rev. B 78, 245314 (2008).

    Google Scholar 

  75. C.V. Ramana, M. Noor-A-Alam, J.J. Gengler, J.G. Jones, ACS Appl. Mater. Interfaces 4, 200 (2012).

    Google Scholar 

  76. S. Nangia, B.J. Garrison, Mol. Phys. 107, 831 (2009).

    Google Scholar 

  77. A. Pelmenschikov, J. Leszczynski, L.G.M. Pettersson, J. Phys. Chem. A 105, 9528 (2001).

    Google Scholar 

  78. Y.T. Xiao, A.C. Lasaga, Geochim. Cosmochim. Acta 60, 2283 (1996).

    Google Scholar 

  79. D. Argyris, D.R. Cole, A. Striolo, J. Phys. Chem. C 113, 19591 (2009).

    Google Scholar 

  80. N.H. de Leeuw, F.M. Higgins, S.C. Parker, J. Phys. Chem. B 103, 1270 (1999).

    Google Scholar 

  81. A.A. Hassanali, S.J. Singer, J. Phys. Chem. B 111, 11181 (2007).

    Google Scholar 

  82. S. Tsuneyuki, M. Tsukada, H. Aoki, Y. Matsui, Phys. Rev. Lett. 61, 869 (1998).

    Google Scholar 

  83. B.W. Vanbeest, G.J. Kramer, R.A. van Santen, Phys. Rev. Lett. 64, 1955 (1990).

    Google Scholar 

  84. G.K. Lockwood, S.H. Garofalini, J. Chem. Phys. 131, 074703 (2009).

    Google Scholar 

  85. T.S. Mahadevan, S.H. Garofalini, J. Phys. Chem. B 111, 8919 (2007).

    Google Scholar 

  86. T.S. Mahadevan, S.H. Garofalini, J. Phys. Chem. C 112, 1507 (2008).

    Google Scholar 

  87. J. Quenneville, R.S. Taylor, A.C.T. van Duin, J. Phys. Chem. C 114, 18894 (2010).

    Google Scholar 

  88. F.H. Stillnger, T.A. Weber, Phys. Rev. B 31, 5262 (1985).

    Google Scholar 

  89. LAMMPS, LAMMPS molecular dynamics package; http://lammps.sandia.gov.

  90. S. Plimpton, J. Comp. Phys. 117, 1 – 19 (1995).

    Google Scholar 

Download references

Acknowledgments

The development of COMB (T.-R.S., S.R.P., and S.B.S.) has been supported by the National Science Foundation under DMR-0426870 and DMR-1005779. The work of T.L. was supported as part of the Center for Atomic Level Catalyst Design, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001058, and by NSF CHE-0809376. The work of M.J.N. was supported by the Consortium for Advanced Simulation of Light Water Reactors, an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under US Department of Energy Contract No. DE-AC05–000R22725. The development of ReaxFF (A.C.T.v.D. and Y.K.S.) was originally funded by the British Royal Society and is currently funded by NSF Grants OCT 1047857 and CBET 1032979, NETL/RUA contract 662.884.001, the FIRST center (an EFRC/DoE funded center), AFOSR Grant FA9550–10–1-0563, DoE grant DE-FE0005867, and AFRL/SBIR contract FA8650–11-C-2185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Kyung Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, Y.K., Shan, TR., Liang, T. et al. Variable charge many-body interatomic potentials. MRS Bulletin 37, 504–512 (2012). https://doi.org/10.1557/mrs.2012.95

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.95

Navigation