Skip to main content

Advertisement

Log in

Bond order potentials for fracture, wear, and plasticity

  • Three decades of many-body potentials in materials research
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Coulson’s bond order is a chemically intuitive quantity that measures the difference in the occupation of bonding and anti-bonding orbitals. Both empirical and rigorously derived bond order expressions have evolved in the course of time and proven very useful for atomistic modeling of materials. The latest generation of empirical formulations has recently been augmented by screening-function approaches. Using friction and wear of diamond and diamond-like carbon as examples, we demonstrate that such a screened bond order scheme allows for a faithful description of dynamical bond-breaking processes in materials far from equilibrium. The rigorous bond order expansions are obtained by systematic coarse-graining of the tight binding approximation and form a bridge between the electronic structure and the atomistic modeling hierarchies. They have enabled bottom-up derivations of bond order potentials for covalently bonded semiconductors, transition metals, and multicomponent intermetallics. The recently developed magnetic bond order potential gives a correct description of both directional covalent bonds and magnetic interactions in iron and is able to correctly predict the stability of bulk Fe polymorphs as well as the intricate properties of dislocation cores. The bond order schemes hence represent a family of reliable and powerful models that can be applied in large-scale simulations of complex processes involving fracture, wear, and plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. C. Coulson, Proc. R. Soc. London, Ser. A 169, 413 (1939).

    Google Scholar 

  2. D.G. Pettifor, Bonding and Structure of Molecules and Solids (Oxford University Press, UK, 1995).

    Google Scholar 

  3. M.W. Finnis, Interatomic Forces in Condensed Matter (Oxford University Press, UK, 2004).

    Google Scholar 

  4. J. Slater, G. Koster, Phys. Rev. 94, 1498 (1954).

    Google Scholar 

  5. G.C. Abell, Phys. Rev. B 31, 6184 (1985).

    Google Scholar 

  6. J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).

    Google Scholar 

  7. J. Tersoff, Phys. Rev. B 39, 5566 (1989).

    Google Scholar 

  8. J. Tersoff, Phys. Rev. B 38, 9902 (1988).

    Google Scholar 

  9. J. Kioseoglou, P. Komninou, T. Karakostas, Phys. Status Solidi B 245, 1118 (2008).

    Google Scholar 

  10. K. Matsunaga, C. Fisher, H. Matsubara, Jpn. J. Appl. Phys. 39, 48 (2000).

    Google Scholar 

  11. K. Albe, Comput. Mater. Sci. 10, 111 (1998).

    Google Scholar 

  12. K. Albe, W. Möller, K.-H. Heinig, Radiat. Eff. Defects Solids 141, 85 (1997).

    Google Scholar 

  13. B. Ni, K.-H. Lee, S.B. Sinnott, J. Phys. Condens. Matter 16, 7261 (2004).

    Google Scholar 

  14. K.O.E. Henriksson, K. Nordlund, Phys. Rev. B 79, 144107 (2009).

    Google Scholar 

  15. M. Müller, P. Erhart, K. Albe, J. Phys. Condens. Matter 19, 326220 (2007).

    Google Scholar 

  16. P. Erhart, K. Albe, Phys. Rev. B 71, 035211 (2005).

    Google Scholar 

  17. N. Juslin, P. Erhart, P. Träskelin, J. Nord, K.O.E. Henriksson, K. Nordlund, E. Salonen, K. Albe, J. Appl. Phys. 98, 123520 (2005).

    Google Scholar 

  18. T. Hammerschmidt, P. Kratzer, M. Scheffler, Phys. Rev. B 77, 235303 (2008).

    Google Scholar 

  19. P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Müller, K. Albe, J. Phys. Condens. Matter 18, 6585 (2006).

    Google Scholar 

  20. D.W. Brenner, Phys. Rev. B 46, 1948 (1992).

    Google Scholar 

  21. D.W. Brenner, Phys. Rev. B 42, 9458 (1990).

    Google Scholar 

  22. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys. Condens. Matter 14, 783 (2002).

    Google Scholar 

  23. S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112, 6472 (2000).

    Google Scholar 

  24. B.J. Garrison, E.J. Dawnkaski, D. Srivastava, D.W. Brenner, Science 255, 835 (1992).

    Google Scholar 

  25. M. Eckert, E. Neyts, A. Bogaerts, Cryst. Growth Des. 10, 3005 (2010).

    Google Scholar 

  26. M. Moseler, P. Gumbsch, C. Casiraghi, A.C. Ferrari, J. Robertson, Science 309, 1545 (2005).

    Google Scholar 

  27. H.U. Jäger, K. Albe, J. Appl. Phys. 88, 1129 (2000).

    Google Scholar 

  28. L. Pastewka, R. Salzer, A. Graff, F. Altmann, M. Moseler, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 3072 (2009).

    Google Scholar 

  29. P.T. Mikulski, L.A. Herman, J.A. Harrison, Langmuir 21, 12197 (2005).

    Google Scholar 

  30. M. Buongiorno Nardelli, B.I. Yakobson, J. Bernholc, Phys. Rev. Lett. 81, 4656 (1998).

    Google Scholar 

  31. M. Neek-Amal, F.M. Peeters, Phys. Rev. B 82, 085432 (2010).

    Google Scholar 

  32. M. Marder, Comput. Sci. Eng. 1 (5), 48 (1999).

    Google Scholar 

  33. L. Pastewka, P. Pou, R. Pérez, P. Gumbsch, M. Moseler, Phys. Rev. B 78, 161402 (R) (2008).

    Google Scholar 

  34. P. Gumbsch, in Materials Science for the 21st Century, Y. Shibutani, S. Ogata, Eds. (The Society of Materials Science, JSMS, Japan, 2001), p. 50.

    Google Scholar 

  35. O.A. Shenderova, D.W. Brenner, A. Omeltchenko, X. Su, L.H. Yang, Phys. Rev. B 61, 3877 (2000).

    Google Scholar 

  36. A. Mattoni, M. Ippolito, L. Colombo, Phys. Rev. B 76, 224103 (2007).

    Google Scholar 

  37. M.S. Daw, M.I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Google Scholar 

  38. M.I. Baskes, J.E. Angelo, C.L. Bisson, Modell. Simul. Mater. Sci. Eng. 2, 505 (1994).

    Google Scholar 

  39. M.I. Baskes, Phys. Rev. B 46, 2727 (1992).

    Google Scholar 

  40. M.S. Tang, C.Z. Wang, C.T. Chan, K.M. Ho, Phys. Rev. B 53, 979 (1996).

    Google Scholar 

  41. H. Haas, C.Z. Wang, M. Fähnle, C. Elsässer, K.M. Ho, Phys. Rev. B 57, 1461 (1998).

    Google Scholar 

  42. D. Nguyen-Manh, D.G. Pettifor, V. Vitek, Phys. Rev. Lett. 85, 4136 (2000).

    Google Scholar 

  43. A.C. Ferrari, A. Libassi, B.K. Tanner, V. Stolojan, J. Yuan, L.M. Brown, S.E. Rodil, B. Kleinsorge, J. Robertson, Phys. Rev. B 62, 11089 (2000).

    Google Scholar 

  44. D.G. McCulloch, D.R. McKenzie, C.M. Goringe, Phys. Rev. B 61, 2349 (2000).

    Google Scholar 

  45. M.M.M. Bilek, D.R. McKenzie, D.G. McCulloch, C.M. Goringe, Phys. Rev. B 62, 3071 (2000).

    Google Scholar 

  46. D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Phys. Rev. B 51, 12947 (1995).

    Google Scholar 

  47. N.A. Marks, Phys. Rev. B 63, 035401 (2000).

    Google Scholar 

  48. N.A. Marks, J. Phys. Condens. Matter 14, 2901 (2002).

    Google Scholar 

  49. L. Pastewka, S. Moser, P. Gumbsch, M. Moseler, Nat. Mater. 10, 34 (2011).

    Google Scholar 

  50. L. Pastewka, S. Moser, M. Moseler, Tribol. Lett. 39, 49 (2010).

    Google Scholar 

  51. G. Moras, L. Pastewka, P. Gumbsch, M. Moseler, Tribol. Lett. 44, 355 (2011).

    Google Scholar 

  52. L. Pastewka, S. Moser, M. Moseler, B. Blug, S. Meier, T. Hollstein, P. Gumbsch, Int. J. Mater. Res. 99, 1136 (2008).

    Google Scholar 

  53. H.C. Meng, K.C. Ludema, Wear 181 – 183, 443 (1995).

    Google Scholar 

  54. J.R. Hird, J.E. Field, Proc. R. Soc. London, Ser. A 460, 3547 (2004).

    Google Scholar 

  55. W. Tolkowsky, DSc degree thesis, City and Guilds College, University of London (1920).

  56. F.M. van Bouwelen, A.L. Bleloch, J.E. Field, L.M. Brown, Diamond Relat. Mater. 5, 654 (1996).

    Google Scholar 

  57. Z. Feng, J.E. Field, J. Phys. D: Appl. Phys. 25, A33 (1992).

    Google Scholar 

  58. A.R. Konicek, D.S. Grierson, P.U.P.A. Gilbert, W.G. Sawyer, A.V. Sumant, R.W. Carpick, Phys. Rev. Lett. 100, 235502 (2008).

    Google Scholar 

  59. S.B. Sinnott, S.-J. Heo, D.W. Brenner, J.A. Harrison, D.L. Irving, in Nanotribology and Nanomechanics I, B. Bhushan, Ed. (Springer, Berlin, Heidelberg, 2011), pp. 439 – 525.

    Google Scholar 

  60. J.A. Harrison, C.T. White, R.J. Colton, D.W. Brenner, MRS Bull. 18, 50 (1993).

    Google Scholar 

  61. J.A. Harrison, D.W. Brenner, J. Am. Chem. Soc. 116, 10399 (1994).

    Google Scholar 

  62. E.A.J.F. Peters, Europhys. Lett. 66, 311 (2004).

    Google Scholar 

  63. B.S. El-Dasher, J. Gray, J. Tringe, J. Biener, A. Hamza, C. Wild, E. Worner, P. Koidl, Appl. Phys. Lett. 88, 241915 (2006).

    Google Scholar 

  64. G. Moras, L. Pastewka, J. Schnagl, M. Walter, P. Gumbsch, M. Moseler, J. Phys. Chem. C 115, 24653 (2011).

    Google Scholar 

  65. J. Robertson, Mater. Sci. Eng. R 37, 129 (2002).

    Google Scholar 

  66. K. Enke, Thin Solid Films 80, 227 (1981).

    Google Scholar 

  67. J. Fontaine, T. Le Mogne, J.L. Loubet, M. Belin, Thin Solid Films 482, 99 (2005).

    Google Scholar 

  68. F. Cyrot-Lackmann, Adv. Phys. 16, 393 (1967).

    Google Scholar 

  69. F. Ducastelle, F. Cyrot-Lackmann, J. Phys. Chem. Solids 31, 1295 (1970).

    Google Scholar 

  70. D.G. Pettifor, Phys. Rev. Lett. 63, 2480 (1989).

    Google Scholar 

  71. A.P. Horsfield, A.M. Bratkovsky, M. Fearn, D.G. Pettifor, M. Aoki, Phys. Rev. B 53, 12694 (1996).

    Google Scholar 

  72. R. Drautz, D.G. Pettifor, Phys. Rev. B 74, 174117 (2006).

    Google Scholar 

  73. M. Finnis, E.R. Drautz, Prog. Mater. Sci. 52, 131 (2007).

    Google Scholar 

  74. D.G. Pettifor, M. Aoki, in Structural and Phase Stability of Alloys, J.L. Moran-Lopez, F. Mejia-Lira, J.M. Sanchez, Eds. (Plenum Press, New York, 1992), pp. 119–132.

    Google Scholar 

  75. P. Alinaghian, P. Gumbsch, A.J. Skinner, D.G. Pettifor, J. Phys. Condens. Matter 5, 5795 (1993).

    Google Scholar 

  76. D.G. Pettifor, I.I. Oleinik, Phys. Rev. B 59, 8487 (1999).

    Google Scholar 

  77. D.G. Pettifor, I.I. Oleinik, Phys. Rev. Lett. 84, 4124 (2000).

    Google Scholar 

  78. D.G. Pettifor, I.I. Oleinik, Phys. Rev. B 65, 172103 (2002).

    Google Scholar 

  79. B.A. Gillespie, X.W. Zhou, D.A. Murdick, H.N.G. Wadley, R. Drautz, D.G. Pettifor, Phys. Rev. B 75, 155207 (2007).

    Google Scholar 

  80. M. Mrovec, M. Moseler, C. Elsässer, P. Gumbsch, Prog. Mater. Sci. 52, 230 (2007).

    Google Scholar 

  81. I.I. Oleinik, D.G. Pettifor, Phys. Rev. B 59, 8500 (1999).

    Google Scholar 

  82. C.H. Xu, C.Z. Wang, C.T. Chan, K.M. Ho, J. Phys. Condens. Matter 4, 6047 (1992).

    Google Scholar 

  83. M.W. Finnis, J.E. Sinclair, Philos. Mag. A 50, 45 (1984).

    Google Scholar 

  84. D.G. Pettifor, M. Aoki, P. Gumbsch, A.P. Horsfield, D. Nguyen-Manh, V. Vitek, Mater. Sci. Eng., A 192/193, 24 (1995).

    Google Scholar 

  85. M. Mrovec, C. Elsasser, P. Gumbsch, Philos. Mag. 89, 3179 (2009).

    Google Scholar 

  86. Z.M. Chen, M. Mrovec, P. Gumbsch, Modell. Simul. Mater. Sci. Eng. 19, 074002 (2011).

    Google Scholar 

  87. M. Mrovec, D. Nguyen-Manh, D.G. Pettifor, V. Vitek, Phys. Rev. B 69, 094115 (2004).

    Google Scholar 

  88. M. Mrovec, R. Gröger, A.G. Bailey, D. Nguyen-Manh, C. Elsässer, V. Vitek, Phys. Rev. B 75, 104119 (2007).

    Google Scholar 

  89. M.J. Cawkwell, D. Nguyen-Manh, D.G. Pettifor, V. Vitek, Phys. Rev. B 73, 064104 (2006).

    Google Scholar 

  90. A. Girshick, A.M. Bratkovsky, D.G. Pettifor, V. Vitek, Philos. Mag. A 77, 981 (1998).

    Google Scholar 

  91. S. Znam, D. Nguyen-Manh, D.G. Pettifor, V. Vitek, Philos. Mag. A 83, 415 (2003).

    Google Scholar 

  92. V. Vitek, M. Mrovec, R. Gröger, J. Bassani, V. Lacherla, L. Yin, Mater. Sci. Eng., A 387, 138 (2004).

    Google Scholar 

  93. V. Vitek, M. Mrovec, J.L. Bassani, Mater. Sci. Eng., A 365, 31 (2004).

    Google Scholar 

  94. R. Gröger, A.G. Bailey, V. Vitek, Acta Mater. 56, 5401 (2008).

    Google Scholar 

  95. R. Gröger, V. Vitek, Acta Mater. 56, 5426 (2008).

    Google Scholar 

  96. M.J. Cawkwell, D. Nguyen-Manh, C. Woodward, D.G. Pettifor, V. Vitek, Science 309, 1059 (2005).

    Google Scholar 

  97. I.H. Katzarov, A.T. Paxton, Phys. Rev. Lett. 104, 225502 (2010).

    Google Scholar 

  98. M. Mrovec, D. Nguyen-Manh, C. Elsässer, P. Gumbsch, Phys. Rev. Lett. 106, 246402 (2011).

    Google Scholar 

  99. L. Ventelon, F. Willaime, P. Leyronnas, J. Nucl. Mater. 386, 26 (2009).

    Google Scholar 

  100. P.T. Mikulski, M.T. Knippenberg, J.A. Harrison, J. Chem. Phys. 131, 241105 (2009).

    Google Scholar 

  101. K. Albe, J. Nord, K. Nordlund, Philos. Mag. 89, 3477 (2009).

    Google Scholar 

  102. T.-R. Shan, B.D. Devine, J.M. Hawkins, A. Asthagiri, S.R. Phillpot, S.B. Sinnott, Phys. Rev. B 82, 235302 (2010).

    Google Scholar 

  103. T. Verstraelen, V. van Speybroeck, M. Waroquier, J. Chem. Phys. 131, 044127 (2009).

    Google Scholar 

  104. O.K. Andersen, O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).

    Google Scholar 

  105. W.C. Lu, C.Z. Wang, T.L. Chan, K. Ruedenberg, K.M. Ho, Phys. Rev. B 70, 041100 (2004).

    Google Scholar 

  106. X. Qian, L. Ju, L. Qi, C. Wang, T. Chan, Y. Yao, K. Ho, S. Yip, Phys. Rev. B 78, 245112 (2008).

    Google Scholar 

  107. D. Nguyen-Manh, D.G. Pettifor, D.J.H. Cockayne, M. Mrovec, S. Znam, V. Vitek, Bull. Mater. Sci. 26, 43 (2003).

    Google Scholar 

  108. D. Nguyen-Manh, V. Vitek, A.P. Horsfield, Prog. Mater. Sci. 52, 255 (2007).

    Google Scholar 

  109. A. Urban, M. Reese, M. Mrovec, C. Elsässer, B. Meyer, Phys. Rev. B 84, 155119 (2011).

    Google Scholar 

  110. E.R. Margine, A.N. Kolmogorov, M. Reese, M. Mrovec, C. Elsässer, B. Meyer, R. Drautz, D.G. Pettifor, Phys. Rev. B 84, 155120 (2011).

    Google Scholar 

  111. A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104, 136403 (2010).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge collaboration and many fruitful discussions with David Pettifor, Vasek Vitek, Christian Elsässer, Bernd Meyer, Duc Nguyen-Manh, Ralf Drautz, Jonathan Hird, and John Field. Financial support was provided by the German Research Foundation (DFG) via grants MR 22/5–1 and Gu 367/30, by the German Ministry of Education and Research (BMBF), Grants 03X0511 and 03X2512G, by the European Commission through contract No. NMP.2010.2.5–1.263335 (MultiHy), and a Marie-Curie fellowship for L.P. (IDOF 272619). Some simulations were carried out at the Jülich Supercomputing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Pastewka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastewka, L., Mrovec, M., Moseler, M. et al. Bond order potentials for fracture, wear, and plasticity. MRS Bulletin 37, 493–503 (2012). https://doi.org/10.1557/mrs.2012.94

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.94

Navigation