Skip to main content
Log in

Toward the nanoscale study of insect physiology using an atomic force microscopy-based nanostethoscope

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Insects constitute the most diverse and populated subclass of animals, with two million species identified. They also display a vast diversity of morphological and functional adaptations that allow them to thrive in various environments, which enables them to fly, swim, or walk nearly anywhere. Insects can be regarded as highly efficient and robust bio-machines, a precious source of material and information for bioinspired miniature technological devices. Yet, to date, little study of the functionality of insects has been undertaken with modern nanotechnology tools. Atomic force microscopy (AFM) is a technique generally used to study surface properties of materials at the nanoscale. Recently it has been shown that the AFM method can be extended to study complex living organisms, cells, and even entire animals, such as insects. AFM has demonstrated the feasibility of recording surface oscillations with sub-Angstrom spatial and sub-millisecond temporal resolutions while positioning the AFM probe at different parts of an insect with nanometer precision. In effect, it enables the AFM to function as a nanostethoscope. This article describes how such a nanostethoscope can be used to study the material properties, physiological reactions, and sensing mechanisms of insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. M.W. Westneat, O. Betz, R.W. Blob, K. Fezzaa, W.J. Cooper, W.-K. Lee, Science 299, 558 (2003).

    Google Scholar 

  2. S.K. Hetz, T.J. Bradley, Nature 433, 516 (2005).

    Google Scholar 

  3. L.J. Cator, B.J. Arthur, L.C. Harrington, R.R. Hoy, Science 323, 1077 (2009).

    Google Scholar 

  4. J.F. Windmill, J. Sueur, D. Robert, J. Exp. Biol. 212, 4079 (2009).

    Google Scholar 

  5. J.C. Jackson, J.F. Windmill, V.G. Pook, D. Robert, Proc. Natl. Acad. Sci. U.S.A. 106, 10177 (2009).

    Google Scholar 

  6. S. Iyer, R.M. Gaikwad, V. Subba-Rao, C.D. Woodworth, I. Sokolov, Nat. Nanotechnol. 4, 389 (2009).

    Google Scholar 

  7. M. Radmacher, M. Fritz, H.G. Hansma, P.K. Hansma, Science 265, 1577 (1994).

    Google Scholar 

  8. J. Domke, W.J. Parak, M. George, H.E. Gaub, M. Radmacher, Eur. Biophys. J. Biophys. Lett. 28, 179 (1999).

    Google Scholar 

  9. B. Szabo, D. Selmeczi, Z. Kornyei, E. Madarasz, N. Rozlosnik, Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 65, 041910 (2002).

    Google Scholar 

  10. G.N. Maksym, B. Fabry, J.P. Butler, D. Navajas, D.J. Tschumperlin, J.D. Laporte, J.J. Fredberg, J. Appl. Physiol. 89, 1619 (2000).

    Google Scholar 

  11. A.E. Pelling, S. Sehati, E.B. Gralla, J.S. Valentine, J.K. Gimzewski, Science 305, 1147 (2004).

    Google Scholar 

  12. M. Radmacher, M. Fritz, H.G. Hansma, P.K. Hansma, Science 265, 1577 (1994).

    Google Scholar 

  13. M.E. Dokukin, N.V. Guz, I. Sokolov, J. Insect Physiol. 57, 260 (2011).

    Google Scholar 

  14. N.V. Guz, M.E. Dokukin, I. Sokolov, PLoS One 5, e12834 (2010).

    Google Scholar 

  15. M.E. Dokukin, N.V. Guz, S. Vasilyev, I. Sokolov, Appl. Phys. Lett. 96, 043701 (2010).

    Google Scholar 

  16. K.M. Maredia, S.H. Gage, D.A. Landis, T.M. Wirth, Biol. Control 2, 253 (1992).

    Google Scholar 

  17. A.D. Briscoe, L. Chittka, Annu. Rev. Entomol. 46, 471 (2001).

    Google Scholar 

  18. M. Mishra, V.B. Meyer-Rochow, Invertebrate Biol. 125, 265 (2006).

    Google Scholar 

  19. B.N. Burkett, H.A. Schneiderman, Biol. Bull. 147, 274 (1974).

    Google Scholar 

  20. A.E. Pelling, P.R. Wilkinson, R. Stringer, J.K. Gimzewski, J. R. Soc. Interface 6, 29 (2009).

    Google Scholar 

Download references

Acknowledgments

The author is thankful to Professor Daniel Robert for careful reading of the manuscript and suggesting numerous improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sokolov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, I. Toward the nanoscale study of insect physiology using an atomic force microscopy-based nanostethoscope. MRS Bulletin 37, 522–527 (2012). https://doi.org/10.1557/mrs.2012.91

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.91

Navigation