Skip to main content
Log in

Electrolyte gated single-crystal organic transistors to examine transport in the high carrier density regime

  • Organic single crystals
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Recent advances in understanding electronic charge transport in organic semiconductors are motivated by the fast growth of organic electronics. In particular, organic single crystals provide an ideal test bed for systematic studies of charge transport, with rapid progress in single-crystal-based field-effect transistors in the past few years. Charge densities induced in crystals by the field-effect have been in the low limit regime (1010 cm–2 to 1013 cm–2) mainly due to the difficulties of boosting gate dielectric capacitance. Consequently, the transport physics of organic crystals in the high-charge-density regime has not been systematically explored. With the emergence of the electrolyte gating technique, ultrahigh charge densities (1013 cm–2 to 1015 cm–2) can be achieved. In this article, we first discuss the general methodologies of applying electrolyte gating to organic crystals. We then review several recent research highlights, including the maximization of charge density and improvement of carrier mobility, enhanced understanding of the mobility-charge density relationship, and observations of ambipolar transport and a novel conductivity peak that occurs only at high charge densities. These recent achievements are extremely important for ongoing efforts to realize novel transport behavior in organic crystals, such as superconductivity and the insulator-to-metal transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. C.H. Ahn, M. Di Ventra, J.N. Eckstein, C.D. Frisbie, M.E. Gershenson, A.M. Goldman, I.H. Inoue, J. Mannhart, A.J. Millis, A.F. Morpurgo, D. Natelson, J.-M. Triscone, Rev. Mod. Phys. 78, 1185 (2006).

    Article  CAS  Google Scholar 

  2. C.H. Ahn, J.M. Triscone, J. Mannhart, Nature 424, 1015 (2003).

    Article  CAS  Google Scholar 

  3. R.C. Haddon, Acc. Chem. Res. 25, 127 (1992).

    Article  CAS  Google Scholar 

  4. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schütz, S. Maisch, F. Effenberger, M. Brunnbauer, F. Stellacci, Nature 431, 963 (2004).

    Article  CAS  Google Scholar 

  5. S.-H. Hur, M.-H. Yoon, A. Gaur, M. Shim, A. Facchetti, T.J. Marks, J.A. Rogers, J. Am. Chem. Soc. 127, 13808 (2005).

    Article  CAS  Google Scholar 

  6. M.-H. Yoon, A. Facchetti, T.J. Marks, Proc. Natl. Acad. Sci. U.S.A. 102, 4678 (2005).

    Article  CAS  Google Scholar 

  7. C. Kim, Z. Wang, H.-J. Choi, Y.-G. Ha, A. Facchetti, T.J. Marks, J. Am. Chem. Soc. 130, 6867 (2008).

    Article  CAS  Google Scholar 

  8. C.H. Ahn, S. Gariglio, P. Paruch, T. Tybell, L. Antognazza, J.M. Triscone, Science 284, 1152 (1999).

    Article  CAS  Google Scholar 

  9. K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki, Nat. Mater. 7, 855 (2008).

    Article  CAS  Google Scholar 

  10. S.-H. Kim, K. Hong, K.-H. Lee, W. Xie, S. Zhang, T.P. Lodge, C.D. Frisbie, Adv. Mater. (2012), doi: 10.1002/adma.201202790.

  11. M.J. Panzer, C.D. Frisbie, J. Am. Chem. Soc. 129, 6599 (2007).

    Article  CAS  Google Scholar 

  12. L. Herlogsson, Y.Y. Noh, N. Zhao, X. Crispin, H. Sirringhaus, M. Berggren, Adv. Mater. 20, 4708 (2008).

    Article  CAS  Google Scholar 

  13. J. Ye, M.F. Craciun, M. Koshino, S. Russo, S. Inoue, H. Yuan, H. Shimotani, A.F. Morpurgo, Y. Iwasa, Proc. Natl. Acad. Sci. U.S.A. 108, 13002 (2011).

    Article  CAS  Google Scholar 

  14. Y. Xia, J.H. Cho, J. Lee, P.P. Ruden, C.D. Frisbie, Adv. Mater. 21, 2174 (2009).

    Article  CAS  Google Scholar 

  15. J.H. Cho, J. Lee, Y. Xia, B.S. Kim, Y. He, M.J. Renn, T.P. Lodge, C.D. Frisbie, Nat. Mater. 7, 900 (2008).

    Article  CAS  Google Scholar 

  16. T.P. Lodge, Science 321, 50 (2008).

    Article  CAS  Google Scholar 

  17. W. Xie, C.D. Frisbie, J. Phys. Chem. C 115, 14360 (2011).

    Article  CAS  Google Scholar 

  18. V. Podzorov, E. Menard, J. Rogers, M. Gershenson, Phys. Rev. Lett. 95, 226601 (2005).

    Article  CAS  Google Scholar 

  19. N.A. Minder, S. Ono, Z. Chen, A. Facchetti, A.F. Morpurgo, Adv. Mater. 24, 503 (2012).

    Article  CAS  Google Scholar 

  20. M.J. Panzer, C.D. Frisbie, Appl. Phys. Lett. 88, 203504 (2006).

    Article  Google Scholar 

  21. S. Ono, S. Seki, R. Hirahara, Y. Tominari, J. Takeya, Appl. Phys. Lett. 92, 103313 (2008).

    Article  Google Scholar 

  22. E. Menard, V. Podzorov, S.H. Hur, A. Gaur, M.E. Gershenson, J.A. Rogers, Adv. Mater. 16, 2097 (2004).

    Article  CAS  Google Scholar 

  23. Y. Yomogida, J. Pu, H. Shimotani, S. Ono, S. Hotta, Y. Iwasa, T. Takenobu, Adv. Mater. 24, 4392 (2012).

    Article  CAS  Google Scholar 

  24. V.C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R.L. Willett, T. Someya, M.E. Gershenson, J.A. Rogers, Science 303, 1644 (2004).

    Article  CAS  Google Scholar 

  25. H. Shimotani, H. Asanuma, J. Takeya, Y. Iwasa, Appl. Phys. Lett. 89, 203501 (2006).

    Article  Google Scholar 

  26. T. Uemura, M. Yamagishi, S. Ono, J. Takeya, Appl. Phys. Lett. 95, 103301 (2009).

    Article  Google Scholar 

  27. S. Ono, N. Minder, Z. Chen, A. Facchetti, A.F. Morpurgo, Appl. Phys. Lett. 97, 143307 (2010).

    Article  Google Scholar 

  28. A.S. Molinari, H. Alves, Z. Chen, A. Facchetti, A.F. Morpurgo, J. Am. Chem. Soc. 131, 2462 (2009).

    Article  CAS  Google Scholar 

  29. S. Ono, K. Miwa, S. Seki, J. Takeya, Appl. Phys. Lett. 94, 063301 (2009).

    Article  Google Scholar 

  30. I.N. Hulea, S. Fratini, H. Xie, C.L. Mulder, N.N. Iossad, G. Rastelli, S. Ciuchi, A.F. Morpurgo, Nat. Mater. 5, 982 (2006).

    Article  CAS  Google Scholar 

  31. S. Zhang, X. Lu, Q. Zhou, X. Li, Ionic Liquids: Physicochemical Properties (Elsevier Science Limited, Amsterdam, 2009).

    Google Scholar 

  32. M.J. Cohen, L.B. Coleman, A.F. Garito, A.J. Heeger, Phys. Rev. B 10, 1298 (1974).

    Article  CAS  Google Scholar 

  33. C.K. Chiang, C.R. Fincher Jr., Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977).

    Article  CAS  Google Scholar 

  34. Y. Xia, W. Xie, P.P. Ruden, C.D. Frisbie, Phys. Rev. Lett. 105, 036802 (2010).

    Article  Google Scholar 

  35. D. Ofer, R.M. Crooks, M.S. Wrighton, J. Am. Chem. Soc. 112, 7869 (1990).

    Article  CAS  Google Scholar 

  36. M.J. Panzer, C.D. Frisbie, J. Am. Chem. Soc. 127, 6960 (2005).

    Article  CAS  Google Scholar 

  37. B.D. Paulsen, C.D. Frisbie, J. Phys. Chem. C 116, 3132 (2012).

    Article  CAS  Google Scholar 

  38. H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Y. Iwasa, Adv. Funct. Mater. 19, 1046 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All work done at the University of Minnesota was supported by the MRSEC program of the National Science Foundation under award number DMR-0819885. We thank Prof. P. Paul Ruden (University of Minnesota), Dr. Yu Xia (Polyera Corporation), and Dr. Shimpei Ono (Central Research Institute of Electric Power Industry) for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, W., Frisbie, C.D. Electrolyte gated single-crystal organic transistors to examine transport in the high carrier density regime. MRS Bulletin 38, 43–50 (2013). https://doi.org/10.1557/mrs.2012.310

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.310

Navigation