Skip to main content
Log in

The second revolution in atom probe tomography

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

There has been explosive growth in the performance and consequential adoption of atom probe tomography in the past decade, which was fueled by the development of the commercial local-electrode atom probe (LEAP) and technologies for specimen preparation. The LEAP introduced to atom probes orders-of-magnitude increases in data collection rates and field of view while improving mass resolution and greatly improving ease of use. These developments constitute the second revolution in the field since the invention of the atom probe in 1967 and atom probe tomography in 1973: the invention of the three-dimensional atom probe was the first revolution. This article seeks to put this second revolution into historical perspective by recounting the essential developments that led to this point. In particular, the role of Erwin Müller, the inventor of the atom probe and related instruments, is highlighted. From the invention of the field emission electron microscope to the field ion microscope to the atom probe and beyond, he created a field of microscopy that is thriving today. Next, the state of the art in atom probe instrumentation is illustrated with a current application. Finally, a brief look toward future developments is provided, which may include superconducting detectors and integration of atom probes with transmission electron microscopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. E.W. Müller, J.A. Panitz, S.B. McLane, Rev. Sci. Instrum. 39, 83 (1968).

    Article  Google Scholar 

  2. J.A. Panitz, Rev. Sci. Instrum. 44, 1034 (1973).

  3. A. Cerezo, T.J. Godfrey, G.D.W. Smith, Rev. Sci. Instrum. 59, 862 (1988).

  4. T.F. Kelly, P.P. Camus, D.J. Larson, L.M. Holzman, S.S. Bajikar, Ultramicroscopy 62, 29 (1996).

  5. O. Nishikawa, M. Kimoto, Appl. Surf. Sci. 76 / 77, 424 (1994).

  6. D.J. Larson, D.T. Foord, A.K. Petford-Long, H. Liew, M.G. Blamire, A. Cerezo, G.D.W. Smith, Ultramicroscopy 79, 287 (1999).

  7. A. Bostel, D. Blavette, A. Menand, A. Sarrau, J. Phys., Colloque C8, Suppl. 50 (11), 501 (1989).

  8. J.J. Thomson, Philos. Mag. 44, 293 (1897).

  9. E. Rutherford, Philos. Mag. 6 (21), 669 (May 1911).

  10. N. Bohr, Philos. Mag. 26, 1 (1913).

  11. W.L. Bragg, Proc. Cambridge Philos. Soc. 17, 43 (1913).

  12. R.H. Fowler, L.W. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928).

  13. E.W. Müller, Zh. Tekh. Fiz. 17, 412 (1936).

  14. E.W. Müller, Z. Phys. 120, 270 (1943).

  15. E.W. Müller, Z. Phys. 31, 136 (1951).

  16. J. Melmed, Appl. Surf. Sci. 94 / 95, 17 (1996).

  17. E.W. Müller, Z. Naturforsch. 11a, 88 (1956).

  18. E.W. Müller, J. Appl. Phys. 27, 474 (1956).

  19. D.F. Barofsky, E.W. Müller, Surf. Sci. 10, 177 (1968).

  20. J.A. Panitz, Microsc. Microanal. 4 (S2), 74 (1998).

  21. W.P. Poschenrieder, Int. J. Mass Spectrom. Ion Phys. 9, 357 (1972).

  22. B.A. Mamyrin, V.I. Karataev, D.V. Shmikk, V.A. Zagulin, Sov. Phys. JETP 3, 45 (1973).

  23. R. Young, J. Ward, F. Scire, Rev. Sci. Instrum. 43, 999 (1972).

  24. G. Binnig, H. Rohrer, Appl. Phys. Lett. 40, 178 (1982).

  25. M.K. Miller, presentation at Microbeam Analysis Society Annual Meeting, Albuquerque, NM (1986).

  26. M.K. Miller, Atom Probe Tomography Analysis at the Atomic Level (Kluwer Academic/Plenum Publishers, New York, 2000), p. 12.

  27. T.F. Kelly, D.C. Mancini, J.J. McCarthy, N.A. Zreiba, Surf. Sci. 246, 396 (1991).

  28. T.F. Kelly, N.A. Zreiba, B.D. Howell, F.J. Bradley, Surf. Sci. 246, 377 (1991).

  29. D.J. Larson, P.P. Camus, T.F. Kelly, Appl. Surf. Sci. 67, 473 (1993).

  30. O. Nishikawa, M. Kimoto, Appl. Surf. Sci. 76, 424 (1994).

  31. C.A. Spindt, I. Brodie, L. Humphrey, E.R. Westerberg, J. Appl. Phys. 47, 5248 (1976).

  32. T.F. Kelly, P.P. Camus, D.J. Larson, L.M. Holzman, S.S. Bajikar, Ultramicroscopy 62, 29 (1996).

  33. T.F. Kelly, P.P. Camus, D.J. Larson, L.M. Holzman, Mater. Res. Soc. Symp. Proc. 332, 587 (1994).

  34. A.R. Waugh, S. Payne, G.M. Worrall, G.D.W. Smith, J. Physique 43, 207 (1984).

  35. K.B. Alexander, P. Angelini, M.K. Miller, J. Physique 50, 549 (1989).

  36. T.F. Kelly, R.L. Martens, S.L. Goodman, U.S. patent 6,576,900 (2003).

  37. M.K. Miller, K.F. Russell, G.B. Thompson, Ultramicroscopy 102, 287 (2005).

  38. M.K. Miller, Microsc. Microanal. 11 (S2), 808 (2005).

  39. K. Thompson, D. Lawrence, D.J. Larson, J.D. Olson, T.F. Kelly, B. Gorman, Ultramicroscopy 107 (2–3), 131 (2006).

  40. D.J. Larson, D. Lawrence, W. Lefebvre, D. Olson, T.J. Prosa, D.A. Reinhard, R.M. Ulfig, P.H. Clifton, J.H. Bunton, D. Lenz, L. Renaud, I. Martin, T.F. Kelly, in Microscopy of Semiconducting Materials, T. Walther, P.A. Midgley, P.A. Cullis Eds., J. Physics: Institute of Physics Conference Series 326, 012030 (2011).

  41. J. Mardinly, in Microscopy of Semiconducting Materials, A.G. Cullis, P.A. Midgley, Eds. (Springer, Dordrecht, 2007), p. 361.

  42. G.L. Kellogg, T.T. Tsong, J. Appl. Phys. 51, 1184 (1980).

  43. J. Liu, C.-W. Wu, T.T. Tsong, Surf. Sci. 246, 157 (1991).

  44. M.K. Miller, T.F. Kelly, Microsc. Microanal. 16 (S2), 1856 (2010).

  45. T.F. Kelly, M.K. Miller, K. Rajan, S.P. Ringer, A.Y. Borisevich, N. Dellby, O. L. Krivanek, Microsc. Microanal. 17 (S2), 708 (2011).

  46. O.L. Krivanek, N. Dellby, A.R. Lupini, Ultramicroscopy 78, 1 (1999).

  47. T.C. Petersen, S.P. Ringer, J. Appl. Phys. 105, 103518 (2009).

  48. T.C. Petersen, S.P. Ringer, Comp. Phys. Comm. 181, 676 (2010).

  49. K.D. Irwin, Sci. Am. 295 (5), 86 (2006).

  50. T.F. Kelly, Microsc. Microanal. 17, 1 (2011).

    Article  CAS  Google Scholar 

  51. T.F. Kelly, M.K. Miller, K. Rajan, S.P. Ringer, Micros. Today, March 2012.

Download references

Acknowledgments

The authors would like to note that Tye Gribb was also listed as an honoree for the Innovations in Materials Characterization Award. Anybody who has worked on a team building an instrument of this complexity understands that there is a large group of people who has contributed a lot to make this happen, and the three of us are the figureheads accepting this award for the entire team that was originally Imago Scientific Instruments and is now Cameca Instruments, Inc. The assistance of John Panitz in recounting the early history of the atom probe is gratefully acknowledged. We would also like to note that this effort would not be possible without sustained financial investment, and there are numerous private and institutional investors whose interest and shared vision have made this dream a reality. The authors would like to thank David Larbalestier for his enthusiasm and willingness to share the dream and commit resources in the early days to make this all happen. Finally, we would like to thank David Seidman, who has been a very strong and ardent supporter of our efforts, a consumer of our products, and is the person who nominated us for this award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Kelly.

Additional information

This article is based on the MRS Innovations in Materials Characterization Award lecture presented by Thomas F. Kelly, David J. Larson, and Tye T. Gribb on April 28, 2011 at the 2011 Materials Research Society Spring Meeting in San Francisco. This award honors an outstanding advance in materials characterization that notably increases knowledge of the structure, composition, in situ behavior under outside stimulus, electronic behavior, or other characterization feature of materials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, T.F., Larson, D.J. The second revolution in atom probe tomography. MRS Bulletin 37, 150–158 (2012). https://doi.org/10.1557/mrs.2012.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.3

Navigation