Skip to main content
Log in

Graphene-based quantum Hall effect metrology

  • Functionalities
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In the past few decades, major improvements in electrical standards have come from quantum solid-state physics. The discovery of the Josephson effect and the integer quantum Hall effect (QHE) led to the realization of reproducible and universal voltage and resistance standards directly linked to Planck’s constant and the electron charge. In efforts to further improve the dissemination of quantum standards, graphene could be crucial for the development of a more convenient resistance standard that is able to benefit from recent helium-free cryogenic techniques. This fascinating material could also contribute to a revolutionary revision of the Système International of units by enabling convincing universality tests of the QHE. This article reports on metrological investigations of the QHE in graphene, with accuracy down to 10−10, demonstrating that a quantum resistance standard more robust than existing GaAs-based ones can be developed. The various results highlight the impacts of graphene quality and graphene–substrate interactions on quantization accuracy and the advantage for metrology of fabrication techniques that are scalable over large sizes such as epitaxial growth or chemical vapor deposition, although no single technique is yet clearly superior for achieving the final goal of an improved quantum standard for resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. K.V. Klitzing, Phys. Rev. Lett. 45, 494 (1980).

    Google Scholar 

  2. W. Poirier, F. Schopfer, Eur. Phys. J. Spec. Top. 172, 207 (2009).

  3. W. Poirier, A. Bounouh, K. Hayashi, H. Fhima, F. Piquemal, G. Genevès, J.P. André, J. Appl. Phys. 92, 2844 (2002).

  4. F. Piquemal, B. Jeckelmann, Eur. Phys. J. Spec. Top. 172 (2009).

  5. A. Eichenberger, G. Genevès, P. Gournay, Eur. Phys. J. Spec. Top. 172, 363 (2009).

  6. W. Poirier, F. Schopfer, J. Guignard, O. Thevenot, P. Gournay, C. R. Acad. Sci. 5, 171 (2011).

  7. A.A. Penin, Phys. Rev. B 81, 089902 (E) (2010).

  8. A.A. Penin, Phys. Rev. B 79, 113303 (2009).

  9. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).

  10. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, S.V.D.I.V. Grigorieva, A.A. Firsov, Nature 438, 197 (2005).

  11. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, G.S.B.J.C. Maan, P. Kim, A.K. Geim, Science 315, 1379 (2007).

  12. J. Nilsson, A.H. Castro Neto, F. Guinea, N.M.R. Peres, Phys. Rev. B 78, 045405 (2008).

  13. E. McCann, V.I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).

  14. W. Poirier, F. Schopfer, Nat. Nanotechnol. 5, 171 (2010).

  15. A. Hartland, K. Jones, J.M. Williams, B.L. Gallagher, T. Galloway, Phys. Rev. Lett. 66, 969 (1991).

  16. B. Jeckelmann, W. Fasel, B. Jeanneret, IEEE Trans. Instrum. Meas. 44, 269 (1995).

  17. A.J.M. Giesbers, G. Rietveld, E. Houtzager, U. Zeitler, R. Yang, K.S. Novoselov, A.K. Geim, J.C. Maan, Appl. Phys. Lett. 93, 222109 (2008).

  18. B. Jeckelmann, B. Jeanneret, D. Inglis, Phys. Rev. B 55, 13124 (1997).

  19. B. Jeckelmann, A. Rufenacht, B. Jeanneret, F. Overney, A. von Campenhausen, G. Hein, IEEE Trans. Instrum. Meas. 50, 218 (2001).

  20. J. Guignard, D. Leprat, D.C. Glattli, F. Schopfer, W. Poirier, Phys. Rev. B 85, 165420 (2012).

  21. S.D. Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011).

  22. K. Kedchedzi, V.I. Fal’ko, E. McCann, B.L. Altshuler, Phys. Rev. Lett. 98, 176806 (2007).

  23. D.V. Mc Caughan, V.T. Murphy, J. Appl. Phys. 44, 2008 (1973).

  24. C. Chaubet, F. Geniet, Phys. Rev. B 58, 13015 (1998).

  25. M. Friedemann, K. Pierz, R. Stosch, F.J. Ahlers, Appl. Phys. Lett. 95, 102103 (2009).

  26. M. Woszczyna, M. Friedemann, K. Pierz, T. Weimann, F.J. Ahlers, J. Appl. Phys. 110, 043712 (2011).

  27. J.-M. Poumirol, W. Escoffier, A. Kumar, B. Raquet, M. Goiran, Phys. Rev. B 82, 121401 (R) (2010).

  28. M. Woszczyna, M. Friedemann, M. Götz, E. Pesel, K. Pierz, T. Weimann, F.J. Ahlers, Appl. Phys. Lett. 100, 164106 (2012).

  29. A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov, S. Paolillo, M.S. Syvajarvi, R. Yakimova, O. Kazakova, T.J.B.M. Janssen, V. Fal’ko, S. Kubatkin, Nat. Nanotechnol. 5, 186 (2010).

  30. S. Lara-Avila, K. Moth-Poulsen, R. Yakimova, T. Bjørnholm, V. Fal’ko, A. Tzalenchuk, S. Kubatkin, Adv. Mater. 23, 878 (2011).

  31. T.J.B.M. Janssen, A. Tzalenchuk, R. Yakimova, S. Kubatkin, S. Lara-Avila, S. Kopylov, V.I. Fal’ko, Phys. Rev. B 83, 233402 (2011).

  32. A.M.R. Baker, J.A. Alexander-Webber, T. Altebaeumer, R.J. Nicholas, Phys. Rev. B 85, 115403 (2012).

  33. T.J.B.M. Janssen, N.E. Fletcher, R. Goebel, J.M. Williams, A. Tzalenchuk, R. Yakimova, S. Kubatkin, S. Lara-Avila, V.I. Falko, New J. Phys. 13, 093026 (2011).

  34. T.J.B.M. Janssen, J.M. Williams, N.E. Fletcher, R. Goebel, A. Tzalenchuk, R. Yakimova, S. Lara-Avila, S. Kubatkin, V.I. Fal’ko, Metrologia 49, 294 (2012).

  35. T. Shen, W. Wu, Q. Yu, C.A. Richter, R. Elmquist, D. Newell, Y.P. Chen, Appl. Phys. Lett. 99, 232110 (2011).

  36. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, J. Phys. Chem. B 108, 19912 (2004).

  37. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324, 1312 (2009).

  38. F. Delahaye, J. Appl. Phys. 73, 7914 (1993).

  39. M. Woszczyna, M. Friedemann, T. Dziomba, Th. Weimann, F.J. Ahlers, Appl. Phys. Lett. 99, 022112 (2011).

  40. X. Du, I. Skachko, F. Duerr, A. Luican, E.Y. Andrei, Nature 462, 192 (2009).

  41. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nanotechnol. 5, 722 (2010).

  42. D. Waldmann, J. Jobst, F. Speck, T. Seyller, M. Krieger, H.B. Weber, Nat. Mater. 10, 357 (2011).

  43. B. Jouault, N. Camara, B. Jabakhanji, A. Caboni, C. Consejo, P. Godignon, D.K. Maude, J. Camassel, Appl. Phys. Lett. 100, 052102 (2012).

  44. E. Pallecchi, M. Ridene, D. Kazazis, C. Mathieu, F. Schopfer, W. Poirier, D. Mailly, A. Ouerghi, Appl. Phys. Lett. 100, 253109 (2012).

  45. C. Riedl, C. Coletti, T. Iwasaki, A.A. Zakharov, U. Starke, Phys. Rev. Lett. 103, 246804 (2010).

  46. X. Wu, Y. Hu, M. Ruan, N.K. Madiomanana, J. Hankinson, M. Sprinkle, C. Berger, W.A. de Heer, Appl. Phys. Lett. 95, 223108 (2009).

  47. S. Lara-Avila, A. Tzalenchuk, S. Kubatkin, R. Yakimova, T.J.B.M. Janssen, K. Cedergren, T. Bergsten, V. Fal’ko, Phys. Rev. Lett. 107, 166602 (2011).

  48. F. Schopfer, W. Poirier, J. Appl. Phys. 102, 054903 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Félicien Schopfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schopfer, F., Poirier, W. Graphene-based quantum Hall effect metrology. MRS Bulletin 37, 1255–1264 (2012). https://doi.org/10.1557/mrs.2012.199

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.199

Navigation