Skip to main content
Log in

Advances in the development and growth of functional materials: Toward the paradigm of materials by design

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Research in functional materials is frequently driven by a desire to make informed choices in the quest for better, more effective materials. A great deal of recent attention has been focused on the modalities of how such informed choices can themselves be made in a better, more effective manner. The examples presented here examine some of these modalities, emphasizing the nexus between new synthesis, computational design and analysis, growth in high purity forms, and finally, end-use in terms of either application or of significant property measurement. The illustrations, many drawn from the recent literature, commence with the role that theory has played, both in property prediction and concomitant materials selection, in the areas of multiferroics and topological insulators. The importance of materials quality is emphasized, using examples from observation of the fractional Quantum Hall Effect, where new science has emerged as a result of improved materials. In the area of organic electronics, prospects for advancing the field are suggested, as are future directions in nanoscience. While the examples chosen here point to developments that require a highly collaborative “systems” approach to materials, the role that serendipity plays is not ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Frontiers in Crystalline Matter: From Discovery to Technology, Committee for an Assessment of and Outlook for New Materials Synthesis and Crystal Growth (National Research Council, 2009).

  2. Materials Genome Initiative for Global Competitiveness (White House Office of Science and Technology Policy, 2011) p. 6.

  3. G.R. Fleming, M.A. Ratner, Phys. Today 61 (7), 28 (2008).

    Google Scholar 

  4. J. Gertner, “ Innovation and the Bell Labs Miracle,” New York Times (February 25, 2012).

  5. W.C. Johnson, J.B. Parsons, M.C. Crew, J. Phys. Chem. 36, 2651 (1932).

    Google Scholar 

  6. R. Juza, H. Hahn, Z. Anorg. Allg. Chem. 239, 282 (1938).

    Google Scholar 

  7. E.F. Schubert, Light Emitting Diodes, 2nd ed. (Cambridge University Press, UK, 2006).

    Google Scholar 

  8. S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).

    Google Scholar 

  9. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, Jpn. J. Appl. Phys. 35, 74 (1996).

    Google Scholar 

  10. N.A. Spaldin, M. Fiebib, Science 309, 391 (2005).

    Google Scholar 

  11. T. Kimura, Annu. Rev. Mater. Res. 37, 387 (2007).

    Google Scholar 

  12. C.J. Fennie, K.M. Rabe, Phys. Rev. Lett. 97, 267602 (2006).

    Google Scholar 

  13. J.H. Lee L. Fang, E. Vlahos, X. Ke, Y.W. Jung, L. Fitting Kourkoutis, J.W. Kim, P. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, C. Hammel, K.M. Rabe, S. Kamba, J. Schubert, J.W. Freeland, D.A. Muller, C.J. Fennie, P. Schiffer, V. Gopalan, E. Johnston-Halperin, D.G. Schlom, Nature 466, 954 (2010).

    Google Scholar 

  14. J.E. Moore, Nature 464, 194 (2010).

    Google Scholar 

  15. M.Z. Hassan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Google Scholar 

  16. S. Chadov, X. Qi, J. Kübler, G.H. Fecher, C. Felser, S.C. Zhang, Nat. Mater. 9, 541 (2010).

    Google Scholar 

  17. H. Lin, L.A. Wray, Y. Xia, S. Xu, S. Jia, R.J. Cava, A. Bansil, M.Z. Hassan, Nat. Mater. 9, 546 (2010).

    Google Scholar 

  18. D.C. Tsui, H.L. Stormer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

    Google Scholar 

  19. H.L. Stormer, A. Chang, D.C. Tsui, J.C.M. Hwang, A.C. Gossard, W. Wiegmann, Phys. Rev. Lett. 50, 1953 (1983).

    Google Scholar 

  20. W. Pan, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. Lett. 90, 16801 (2003).

    Google Scholar 

  21. J.K. Jain, Phys. Rev. Lett. 63, 199 (1989).

    Google Scholar 

  22. H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, Y. Tokura, Nat. Mater. 11, 103 (2012).

    Google Scholar 

  23. B. Jalan, P. Moetakef, S. Stemmer, Appl. Phys. Lett. 95, 032906 (2009).

    Google Scholar 

  24. J. Son, P. Moetakef, B. Jalan, O. Bierwagen, N.J. Wright, R. Engel-Herbert, S. Stemmer, Nat. Mater. 9, 482 (2010).

    Google Scholar 

  25. M. Pope, H.P. Kallmann, P. Magnante, J. Chem. Phys. 38, 2042 (1963)

    Google Scholar 

  26. W. Helfrich, W.G. Schneidere, Phys. Rev. Lett. 14, 229 (1965).

    Google Scholar 

  27. W. Helfrich, W.G. Schneidere, J. Chem. Phys. 14, 2902 (1965).

    Google Scholar 

  28. C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).

    Google Scholar 

  29. C.W. Tang, S.A. VanSlyke, J. Appl. Phys. 65, 3610 (1989).

    Google Scholar 

  30. H. Yersin, Ed., Highly Efficient OLEDs with Phosphorescent Materials (Wiley-VCH, Berlin, 2007).

    Google Scholar 

  31. M.E. Thompson, P.E. Djurovich, S. Barlow, S.R. Marder, in Comprehensive Organometallic Chemistry III, R.H. Crabtree, D.M.P. Mingos, Eds. (Elsevier, Oxford, UK, 2007), Chapter 12.04.

    Google Scholar 

  32. L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura, F. Barigelletti, Top. Curr. Chem. 281, 143 (2007).

    Google Scholar 

  33. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

  34. C. Ulbricht, B. Beyer, C. Freibe, A. Winter, U.S. Schubert, Adv. Mater. 21, 4418 (2009).

    Google Scholar 

  35. N.C. Giebink, G.P. Wiederrecht, M.R. Wasielewski, S.R. Forrest, Phys. Rev. B 83, 195326 (2011).

    Google Scholar 

  36. M. Małachowski, J. Żmija, Opto-Electron. Rev. 18, 121 (2010).

    Google Scholar 

  37. W. Wu, Y. Liu, D. Zhu, Chem. Soc. Rev. 39, 1489 (2010).

    Google Scholar 

  38. Y. Vasquez, A.E. Henkes, J.C. Bauer, R.E. Schaak, J. Solid State Chem. 181 1509 (2008).

    Google Scholar 

  39. H. Kim, M. Achermann, L.P. Balet, J.A. Hollingsworth, V.I. Klimov, J. Am. Chem. Soc. 127, 544 (2005).

    Google Scholar 

  40. F.X. Redl, K.-S. Cho, C.B. Murray, S. O’Brien, Nature 423, 968 (2003).

    Google Scholar 

  41. S.C. Erwin, L. Zu, M.I. Haftel, A.L. Efros, T.A. Kennedy, D.J. Norris, Nature 436, 91 (2005).

    Google Scholar 

  42. E. Nikolla, J. Schwank, S. Linic, J. Am. Chem. Soc. 131, 2747 (2009).

    Google Scholar 

  43. A. Popescu, A. Datta, G.S. Nolas, L.M. Woods, J. Appl. Phys. 109, 103709 (2011).

    Google Scholar 

  44. D.J. Milliron, A.P. Alivisatos, C. Pitois, C. Edder, J.M.J. Fréchet, Adv. Mater. 15, 58 (2003).

    Google Scholar 

  45. D.H. Webber, R.L. Brutchey, J. Am. Chem. Soc. 134, 1085 (2012).

    Google Scholar 

  46. M.V. Kovalenko, M. Scheele, D.V. Talapin, Science 324, 1417 (2009).

    Google Scholar 

  47. H. Zhang, B. Hu, L. Sun, R. Hovden, F.W. Wise, D.A. Muller, R.D. Robinson, Nano Lett. 11, 5356 (2011).

    Google Scholar 

  48. J.J. Urban, D.V. Talapin, E.V. Shevchenko, C.B. Murray, J. Am. Chem. Soc. 128, 3248 (2006).

    Google Scholar 

  49. J.L. Mohanan, I.U. Arachchige, S.L. Brock, Science 307, 397 (2005).

    Google Scholar 

  50. D.R. Rolison, L.F. Nazar, MRS Bull. 36, 486 (2011).

    Google Scholar 

  51. Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, H. Hosono, J. Am. Chem. Soc. 128, 10012 (2006).

    Google Scholar 

  52. A. Waintal, J. Chenavas, C.R. Acad. Sci. Paris 264 (1967).

  53. C.W.F.T. Pistorius, J.G. Kruger, J. Inorg. Nucl. Chem. 38, 1471 (1976).

    Google Scholar 

  54. B.B. Van Aken, A. Meetsma, T.M. Palstra, Acta Crystallogr. C 57, 230 (2001).

    Google Scholar 

  55. B.B. Van Aken, T.M. Palstra, A. Filippetti, N.A. Spaldin, Nat. Mater. 3, 164 (2004).

    Google Scholar 

  56. A.E. Smith, H. Mizoguchi, K. Delaney, N.A. Spaldin, A.W. Sleight, M.A. Subramanian, J. Am. Chem. Soc. 131, 17084 (2009).

    Google Scholar 

  57. A. Dixit, A.E. Smith, M.A. Subramanian, G. Lawes, Solid State Commun. 150, 746 (2010).

    Google Scholar 

  58. P. Jiang, J. Li, A.W. Sleight, M.A. Subramanian, Inorg. Chem. 50, 5858 (2011).

    Google Scholar 

  59. A.E. Smith, A.W. Sleight, M.A. Subramanian, Mater. Res. Bull. 46, 1 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Seshadri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seshadri, R., Brock, S.L., Ramirez, A. et al. Advances in the development and growth of functional materials: Toward the paradigm of materials by design. MRS Bulletin 37, 682–690 (2012). https://doi.org/10.1557/mrs.2012.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.147

Navigation