Skip to main content

Advertisement

Log in

Scanning probes for new energy materials: Probing local structure and function

  • Scanning probes for new energy materials: Probing local structure and function
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The design and control of materials properties, often at the nanoscale, are the foundation of many new strategies for energy generation, storage, and efficiency. Scanning probe microscopy (SPM) has evolved into a very large toolbox for the characterization of properties spanning size scales from hundreds of microns to nanometers. Recent advances in SPM involve properties and size scales of precise relevance to energy-related materials, as presented in this issue. These advances are put into the general context of energy research, and the general principles are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. International Energy Outlook 2011 (DOE/EIA-0484, 2011); www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf.

  2. D.A. Bonnell Ed., Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications (Wiley, NY, 2000).

    Google Scholar 

  3. E. Meyer, H.J. Hug, R. Bennewitz, Scanning Probe Microscopy: The Lab on a Tip (Springer, Berlin, 2004).

    Google Scholar 

  4. C. Groves, O.G. Reid, D.S. Ginger, Acc. Chem. Res. 43, 612 (2010).

    Google Scholar 

  5. Q. Guo, G.M. Ford, H.W. Hillhouse, R. Agrawal, Nano Lett. 9, 3060 (2009).

    Google Scholar 

  6. Q. Guo, G.M. Ford, W.C. Yang, B.C. Walker, E.A. Stach, H.W. Hillhouse, R. Agrawal, J. Am. Chem. Soc. 132, 17384 (2010).

    Google Scholar 

  7. A. Luque, A. Marti, A.J. Nozik, MRS Bull. 32, 236 (2007).

    Google Scholar 

  8. M. Grätzel, MRS Bull. 30, 23 (2005).

    Google Scholar 

  9. J.J. Davis, D.A. Morgan, C.L. Wrathmell, D.N. Axford, J. Zhao, N. Wang, J. Mater. Chem. 15, 2160 (2005).

    Google Scholar 

  10. A.M. Rao, X. Ji, T.M. Tritt, MRS Bull. 31, 218 (2006).

    Google Scholar 

  11. F.E. Osterloh, B.A. Parkinson, MRS Bull. 36, 17 (2011).

    Google Scholar 

  12. H. Atwater, MRS Bull. 36, 57 (2011).

    Google Scholar 

  13. M.G. Kim, J. Cho, Adv. Funct. Mater. 19, 1497 (2009).

    Google Scholar 

  14. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008).

    Google Scholar 

  15. M. Haruta, M. Date, Appl. Catal., A 222, 427 (2001).

    Google Scholar 

  16. S. Lanyi, M. Hruskovic, J. Phys. D-Appl. Phys. 36, 598 (2003).

    Google Scholar 

  17. S. Sadewasser, D. Abou-Ras, D. Azulay, R. Baier, I. Balberg, D. Cahen, S. Cohen, K. Gartsman, K. Ganesan, J. Kavalakkatt, W. Li, O. Millo, Th. Rissom, Y. Rosenwaks, H.-W. Schock, A. Schwarzman, T. Unold, Thin Solid Films 519, 7341 (2011).

    Google Scholar 

  18. M. Freitag, S. Kalinin, D. Bonnell, A.T. Johnson, Phys. Rev. Lett. 89, 216801 (2002).

    Google Scholar 

  19. D. Bonnell, ACS Nano 2, 1753 (2008).

    Google Scholar 

  20. M.J. Brukman, D.A. Bonnell, Phys. Today 61, 36 (2008).

    Google Scholar 

  21. R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge University Press, UK, 1994).

    Google Scholar 

  22. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991).

    Google Scholar 

  23. Y. Martin, D.W. Abraham, H.K. Wickramasinghe, Appl. Phys. Lett. 52, 1103 (1988).

    Google Scholar 

  24. J.E. Stern, B.D. Terris, H.J. Mamin, D. Rugar, Appl. Phys. Lett. 53, 2717 (1988).

    Google Scholar 

  25. S. Sadewasser, Th. Glatzel, Eds., Kelvin Probe Force Microscopy: Measuring and Compensating Electrostatic Forces (Springer, NY, 2012).

    Google Scholar 

  26. S. Kitamura, K. Suzukia, M. Iwatsukia, C.B. Mooney, Appl. Surf. Sci. 157, 222 (2000).

    Google Scholar 

  27. G.H. Enevoldsen, T. Glatzel, M.C. Christensen, J.V. Lauritsen, F. Besenbacher, Phys. Rev. Lett. 100, 236104 (2008).

    Google Scholar 

  28. A. Gruverman, O. Auciello, H. Tokumoto, J. Vac. Sci. Technol., B 14, 602 (1996).

    Google Scholar 

  29. M.T. Buscaglia, V. Buscaglia, M. Viviani, J. Petzelt, M. Savinov, L. Mitoseriu, A. Testino, P. Nanni, C. Harnegea, Z. Zhao, M. Nygren, Nanotechnology 15, 1113 (2004).

    Google Scholar 

  30. A. Gruverman, O. Auciello, R. Ramesh, H. Tokumoto, Nanotechnology 8, A38 (1997).

    Google Scholar 

  31. K. Noda, K. Ishida, A. Kubono, T. Horiuchi, H. Yamada, K. Matsushige Jpn. J. Appl. Phys., Part 1 40, 4361 (2001).

    Google Scholar 

  32. B.J. Rodriguez, S. Jesse, S.V. Kalinin, J. Kim, S. Ducharme, V.M. Fridkin Appl. Phys. Lett. 90, 122904 (1007).

    Google Scholar 

  33. S.V. Kalinin, B.J. Rodriguez, S. Jesse, T. Thundat, A. Gruverman, Appl. Phys. Lett. 87, 053901 (2005).

    Google Scholar 

  34. B.J. Rodriguez, C. Callahan, S.V. Kalinin, R. Proksch, Nanotechnology 18, 475504 (2007).

    Google Scholar 

  35. S. Jesse, S.V. Kalinin, R. Proksch, A.P. Baddorf, B.J. Rodriguez, Nanotechnology 18, 435503 (2007).

    Google Scholar 

  36. N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I.N. Ivanov, N.J. Dudney, S.V. Kalinin, Nano Lett. 10, 3420 (2010).

    Google Scholar 

  37. N. Balke, S. Jesse, A.N. Morozovska, E. Eliseev, D.W. Chung, Y. Kim, L. Adamczyk, R.E. Garcia, N.J. Dudney, S.V. Kalinin, Nat. Nanotechnol. 5, 749 (2010).

    Google Scholar 

  38. A. Kumar, F. Ciucci, A.N. Morozovska, S.V. Kalinin, S. Jesse, Nat. Chem. 3, 707 (2011).

    Google Scholar 

  39. M. Nikiforov, S. Schneider, T.-H. Park, P. Milde, U. Zerweck, C. Loppacher, L. Eng, M.J. Therien, N. Engheta, D. Bonnell, J. Appl. Phys. 106, 114307 (2009).

    Google Scholar 

  40. R. Shao, S. Kalinin, D.A. Bonnell, Appl. Phys. Lett. 82, 1869 (2003).

    Google Scholar 

  41. T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317 100 (2007).

    Google Scholar 

  42. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3, 31 (2008).

    Google Scholar 

  43. A.H. Rice, R. Giridharagopal, S.X. Zheng, F.S. Ohuchi, D.S. Ginger, C.K. Luscombe, ACS Nano 5 (4), 3132 (2011).

    Google Scholar 

  44. M. Martín-González, G.J. Snyder, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy, Nano Lett. 3 (7), 973 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Balke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balke, N., Bonnell, D., Ginger, D.S. et al. Scanning probes for new energy materials: Probing local structure and function. MRS Bulletin 37, 633–637 (2012). https://doi.org/10.1557/mrs.2012.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.141

Navigation