Skip to main content
Log in

Gate contact materials in Si channel devices

  • Contact Materials for Nanoelectronics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Research on contact materials in silicon semiconductor devices has recently gained significant momentum due to the increasing performance demands as the complementary metal oxide semiconductor technology advances. Applications include transistor materials such as gate electrodes and contacts to highly doped semiconductors substrates. This review will discuss the key issues in the development of metal gate electrodes with high-κ dielectrics to replace the conventional polycrystalline silicon electrode. Challenges in establishing a work function measurement technique, the role of the metal/high-κ interface in modulating the effective work function, and a review of leading industry solutions will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. G.E. Moore, “Progress in digital integrated electronics,” presented at Electron Devices Meeting, International, 1975.

  2. B.H. Lee et al., “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application,” presented at Electron Devices Meeting, 1999. IEDM Technical Digest, International, 1999.

  3. G.D. Wilk, R.M. Wallace, J.M. Anthony, Journal of Applied Physics 89, 5243 (2001).

    Article  CAS  Google Scholar 

  4. C. Hobbs, L. Fonseca, V. Dhandapani, S. Samavedam, B. Taylor, G. Grant, L. Dip, D. Triyoso, VLSI Technology Digest, 9–10 (2003).

  5. Y.C. Yeo, P. Ranade, T.J. King, C.M. Hu, Journal of Applied Physics 92, 7266 (2002).

    Article  CAS  Google Scholar 

  6. C.Y. Wong et al., “Doping of n+ and p+ polysilicon in a dual-gate CMOS process,” presented at Electron Devices Meeting, 2003.

  7. J.C. Hu, H. Yang, R. Kraft, A.L.P. Rotondaro, S. Hattangady, W.W. Lee, R.A. Chapman, C.-P. Chao, A. Chatterjee, M. Hanratty, M. Rodder, I.-C. Chen, “Feasibility of using W/TiN as metal gate for conventional 0.13 μm CMOS technology and beyond,” Electron Devices Meeting, 1997. Technical Digest, International, 825 (1997).

  8. M. Chudzik, B. Doris, R. Mo, J. Sleight, E. Cartier, “High-performance high-k/metal gates for 45 nm CMOS and beyond with gate-first processing,” VLSI, 194, 2007.

  9. X. Chen, et al., “A cost effective 32 nm high-K/ metal gate CMOS technology for low power applications with single-metal/gate-first process,” VLSI, 88, 2008.

  10. F. Arnaud, et al., “32 nm general purpose bulk CMOS technology for high performance applications at low voltage,” IEDM, 633 (2008).

  11. K. Mistry, et al., “A 45 nm logic technology with high-k+metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging,” IEDM, 247, 2007.

  12. P. Packan, et al., “High performance 32 nm logic technology featuring 2nd generation high-k + metal gate transistors,” IEDM, 659, 2009.

  13. C.H. Jan, et al., “A 32 nm SoC Platform Technology With 2nd Generation High-k/Metal Gate Transistorspp,” IEDM, 647, 2009.

  14. H. Michaelson, Journal of Applied Physics 48, 4729 (1977).

    Article  CAS  Google Scholar 

  15. H.C. Wen et al. IEEE Electron Device Letters, 27, 598–601 (2006).

    Article  Google Scholar 

  16. G. Brown et al., “An Improved Methodology for Gate Electrode Work Function Extraction in SiO2 and High-k Gate Stack Systems Using Terraced Oxide Structures,” IEEE SISC conference, 2004.

  17. H.C. Wen et al., “Work function engineering of RuHf alloys as gate electrodes for future generation dual metal CMOS,” presented at VLSI Technology, 2005.

  18. H.C. Wen, PhD dissertation, The University of Texas at Austin, pp. 61, 130 (2006).

  19. H.C. Wen, P. Lysaght, H.N. Alshareef, C. Huffman, H.R. Harris, K. Choi, Y. Senzaki, H. Luan, P. Majhi, B.H. Lee, M.J. Campin, B. Foran, G.D. Lian, D.-L. Kwong, Journal of Applied Physics 98, 043520 (2005).

    Article  Google Scholar 

  20. H.-C. Wen, K. Choi, P. Lysaght, P. Majhi, H. Alshareef, C. Huffman, R. Harris, H. Luan, B.H. Lee, N. Yamada, presented at VLSI Technology, 2005. (VLSI-TSA-Tech). 2005 IEEE VLSI-TSA International Symposium on pp. 107–108, 2005.

  21. J.H. Sim, et al., Electron Device Letters, IEEE, 24, 631 (2003).

    Article  CAS  Google Scholar 

  22. H.C. Wen, et al., VLSI Technology, 2005. Digest of Technical Papers. 2005 Symposium, 46 (2005).

  23. H.C. Wen. et al., VLSI Technology, 2007. Digest of Technical Papers. 2007 Symposium, 160 (2007).

  24. H.C. Wen, Microelectronic Engineering 85, 2 (2008).

    Article  CAS  Google Scholar 

  25. H.N. Alshareef et al., Future Fab 19, 91 (2006).

    Google Scholar 

  26. H.N. Alshareef, H.F. Luan, K. Choi, H.R. Harris, H.C. Wen, M.A. Quevedo-Lopez, P. Majhi, B.H. Lee, Applied Physics Letters 88, 112114 (2006).

    Article  Google Scholar 

  27. P.D. Kirsch et al., Applied Physics Letters 92, 092901 (2008).

    Article  Google Scholar 

  28. C. Hinkle et al., “Dipole controlled metal gate with hybrid low resistivity cladding for gate-last CMOS with low Vt,” VLSI Symp 2010 17.3.

  29. S.C. Song et al., “Mechanism of VFB roll-off with high work function metal gate and low temperature oxygen incorporation to achieve PMOS band edge work function,” Electron Devices Meeting, 2007. IEDM 2007. IEEE International

  30. C. Hinkle, R.V. Galatage, R.A. Chapman, E.M. Vogel, H.N. Alshareef, C. Freeman, E. Wimmer, H. Niimi, A. Li-Fatou, J.B. Shaw, J.J. Chambers, Applied Physics Letters 96, 103502 (2010).

    Article  Google Scholar 

  31. G. Bersuker, C.S. Park, H.C. Wen, K. Choi, O Sharia, O., A. Demkov, “Origin of the flat-band voltage (VFB) roll-off phenomenon in metal/high-k gate stacks” ESSDERC 2008.

  32. K. Tatsumura et al., “Intrinsic Correlation between Mobility Reduction and Vt shift due to Interface Dipole Modulation in HfSiON/SiO2 stack by La or Al addition,” in IEDM Technical Digest, IEDM, p. 25 (2008).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, HC., Chambers, J. Gate contact materials in Si channel devices. MRS Bulletin 36, 101–105 (2011). https://doi.org/10.1557/mrs.2011.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.8

Navigation