Skip to main content
Log in

Novel contact structures for high mobility channel materials

  • Contact Materials for Nanoelectronics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

A novel contact technique to reduce the effective Schottky barrier height on Ge and III–V high mobility semiconductors is described. Single metals are used in combination with an ultrathin dielectric to tune the metal/semiconductor barrier height toward zero by shifting or suppressing the strong Fermi-level pinning. Barrier height reduction in the metal-insulator-semiconductor (MIS) contact structure is verified through direct measurements and deduced from increased diode current and reduced contact resistance. Current demonstrations of the MIS contact have barriers as low as 0.05 eV for Er/SiN/n-Ge and 0.18 eV for Al/Al2O3/n-GaAs. The underlying physics is discussed along with the dependence of the minimum achievable contact resistance and barrier height on the metal, dielectric material, dielectric thickness, and substrate doping. For Ge, the MIS contact provides a possible solution to the low n-type Ge dopant solubility problem and allows for the fabrication of Schottky barrier field-effect transistors. For III–V semiconductors, the MIS contact allows for the use of a non-alloyed contact that is crucial for the scalability of III–V metal oxide semiconductor field-effect transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. D. Kuzum, T. Krishnamohan, A. Nainani, Y. Sun, P.A. Pianetta, H.S-.P. Wong, K.C. Saraswat, IEDM Tech. Digest 453–456 (2009).

  2. Y. Nakakita, R. Nakane, T. Sasada, H. Matsubara, M. Takenaka, S. Takagi, IEDM Tech. Digest 877–880 (2008).

  3. M. Radosavljevic, B. Chu-Kung, S. Corcoran, G. Dewey, M.K. Hudait, J.M. Fastenau, J. Kavalieros, W.K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, W. Rachmady, U. Shah, R. Chau, IEDM Tech. Digest 319–322 (2009).

  4. Y.Q. Wu, M. Xu, R.S. Wang, O. Koybasi, P.D. Ye, IEDM Tech. Digest 323–326 (2009).

  5. D.H. Kim J.A. del Alamo, IEDM Tech. Digest 719–722 (2008).

  6. A. Dimoulas, P. Tsipas, A. Sotiropoulos, E.K. Evangelou, Appl. Phys. Lett. 89, 252110 (2006).

    Article  Google Scholar 

  7. K. Ikeda, Y. Yamashita, N. Sugiyama, N. Taoka, S. Takagi, Appl. Phys. Lett. 88, 152115 (2006).

    Article  Google Scholar 

  8. G. Myburg, F.D. Auret, W.E. Meyer, C.W. Louw, M.J. van Staden, Thin Solid Films 325, 181 (1998).

    Article  CAS  Google Scholar 

  9. N. Waldron, D.H. Kim, J.A. del Alamo, IEDM Tech. Digest 633–636 (2007).

  10. U. Singisetti, M.A. Wistey, J.D. Zimmerman, B.J. Thibeault, M.J.W. Rodwell, A.C. Gossard, S.R. Bank, Appl. Phys. Lett. 93, 183502 (2008).

    Article  Google Scholar 

  11. T. Yasuda, H. Ishii, Y. Urabe, T. Itatani, N. Miyata, H. Yamada, N. Fukuhara, M. Hata, M. Yokoyama, M. Takenaka, S. Takagi, 40th IEEE Semiconductor Interface Specialists Conference (SISC), 14–15 (2009).

  12. H.-S.P. Wong, L. Wei, J. Deng, International Conference on Solid State and Integrated Circuit Technology (ICSICT 2008), Beijing, China, October 20–23, 21–24 (2008).

  13. D. Connelly, C. Faulkner, D.E. Grupp, J. Harris, IEEE Trans. on Nanotech. 3, 98–104 (2004).

    Article  Google Scholar 

  14. W. Schottky, Phys. Z41, 570 (1940).

    Google Scholar 

  15. V. Heine, Physical Review, 138, A1689 (1965).

    Article  Google Scholar 

  16. J. Tersoff, Phys. Rev. Lett. 52, 465 (1984).

    Article  CAS  Google Scholar 

  17. Y. Yeo, T.J. King, C. Hu, J. Appl. Phys. 92, 7266 (2002)

    Article  CAS  Google Scholar 

  18. W. Mönch, Phys. Rev. Lett. 58, 1260 (1987).

    Article  Google Scholar 

  19. R. Tung, Phys. Rev. B. 64, 205310 (2001).

    Article  Google Scholar 

  20. A. Pethe, Ph.D. dissertation, Stanford University (2007).

  21. B.E. Coss, W.Y Loh, J. Oh, G. Smith, C. Smith, H. Adhikari, B. Sassman, S. Parthasarathy, J. Barnett, P. Majhi, R.M. Wallace, J. Kim, R. Jammy, IEEE Symp. VLSI Tech. 104-105 (2009).

  22. R.R. Lieten, S. Degroote, M. Kuijk, G. Borghs, Appl. Phys. Lett. 92, 022106 (2008).

    Article  Google Scholar 

  23. T Nishimura, K. Kita, A. Toriumi,App. Phys. Express 051406 (2008).

  24. M. Kobayashi, A. Kinoshita, K. Saraswat, H.-S.P Wong, IEEE Symp. VLSI Tech. 54–55 (2008).

  25. J. Hu, X. Guan, K.C. Saraswat, H.-S.P. Wong, IEEE International Symposium on VLSI Technology Systems and Applications (VLSI – TSA), 123 (2009).

  26. J. Hu, K.C. Saraswat, H.-S.P. Wong, J. Appl. Phys.107, 063712 (2010)

    Article  Google Scholar 

  27. P.T. Chen, Y. Sun, Y. Nishi, J. Appl. Phys. 103, 034106 (2008).

    Article  Google Scholar 

  28. C.L. Hinkle, A.M. Sonnet, E.M. Vogel, S. McDonnell, G.J. Hughes, M. Milojevic, B. Lee, F.S. Aguirre-Tostado, K.J. Choi, H.C. Kim, J. Kim, R.M. Wallace, Appl. Phys. Lett. 92, 071901 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported, in part, by the Focus Center Research Program (FCRP) (MSD), Intel Corporation, and NSF (ECS-0501096). J. Hu is additionally supported by the Intel PhD Fellowship, Stanford Graduate Fellowship, and the National Defense Science and Engineering Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Wong, HS. & Saraswat, K. Novel contact structures for high mobility channel materials. MRS Bulletin 36, 112–120 (2011). https://doi.org/10.1557/mrs.2011.5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.5

Navigation