Skip to main content

Advertisement

Log in

Computational-based catalyst design for thermochemical transformations

  • High-Performance Computing for Materials Design to Advance Energy Science
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Future energy production and storage in the chemical and refinery industries, stationary power generation, and transportation sectors will employ a diverse suite of technologies, including renewables, such as biomass, untapped energy resources, and processes with improved energy efficiency. Heterogeneous nanocatalysts will play an ever-increasing role in these technologies. Increased precision in molecular architecture over multiple length scales and/or tailored multi-functionality will often be needed in these materials. Advances in computational-based discovery of such nanomaterials are described through examples that predict the molecular architecture of emergent catalytic materials and reveal mechanisms of colloidal metal nanoparticle growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. What You Need to Know About Energy ( National Academies Press , Washington, DC, 2008).

  2. “ Basic Research Needs for Materials Under Extreme Environments ,” DOE Office of Basic Energy Sciences Workshop Report (June 2007 ).

  3. D.G. Vlachos, J.G. Chen, R.J. Gorte, G.W. Huber, M. Tsapatsis, Catal. Lett. 140 (3–4), 77 (2010).

    Article  CAS  Google Scholar 

  4. C.J.H. Jacobsen, S. Dahl, B.S. Clausen, S. Bahn, A. Logadottir, J.K. Norskov, J. Am. Chem. Soc. 123 (34), 8404 (2001).

    Article  CAS  Google Scholar 

  5. J.K. Nørskov, T. Bligaard, J. Rossmeis, C.H. Christensen, Nat. Chem. 1, 37 (2009).

    Article  Google Scholar 

  6. S. Linic, J. Jankowiak, M.A. Barteau, J. Catal. 224 (2), 489 (2004).

    Article  CAS  Google Scholar 

  7. D.A. Hansgen, D.G. Vlachos, G.C. Chen, Nat. Chem. 2 (5), 484 (2010).

    Article  CAS  Google Scholar 

  8. A.M. Karim, V. Prasad, G. Mpourmpakis, W.W. Lonergan, A.I. Frenkel, J.G. Chen, D.G. Vlachos, J. Am. Chem. Soc. 131, 12230 (2009).

    Article  CAS  Google Scholar 

  9. K.M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, G.A. Somorjai, Nano Lett. 7 (10), 3097 (2007).

    Article  CAS  Google Scholar 

  10. G. Mpourmpakis, D.G. Vlachos, J. Phys. Chem. C 113, 7329 (2009).

    Article  CAS  Google Scholar 

  11. S. Chretien, S.K. Buratto, H. Metiu, Curr. Opin. Solid State Mater. Sci. 11 (5–6), 62 (2007).

    Article  CAS  Google Scholar 

  12. G. Mpourmpakis, A.N. Andriotis, D.G. Vlachos, Nano Lett. 10, 1041 (2010).

    Article  CAS  Google Scholar 

  13. M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. (2), 405 (1987).

    Article  Google Scholar 

  14. B. Hvolbaek, T.V.W. Janssens, B.S. Clausen, H. Falsig, C.H. Christensen, J.K. Norskov, Nano Today 2 (4), 14 (2007).

    Article  Google Scholar 

  15. K.K. Caswell, C.M. Bender, C.J. Murphy, Nano Lett. 3 (5), 667 (2003).

    Article  CAS  Google Scholar 

  16. P.D. Jadzinsky, G. Calero, C.J. Ackerson, D.A. Bushnell, R.D. Kornberg, Science 318 (5849), 430 (2007).

    Article  CAS  Google Scholar 

  17. S. Caratzoulas, D.G. Vlachos, M. Tsapatsis, J. Am. Chem. Soc. 128 (50), 16138 (2006).

    Article  CAS  Google Scholar 

  18. V. Nikolakis, E. Kokkoli, M. Tirrell, M. Tsapatsis, D.G. Vlachos, Chem. Mater. 12 (3), 845 (2000).

    Article  CAS  Google Scholar 

  19. G. Mpourmpakis, S. Caratzoulas, D.G. Vlachos, Nano Lett. 10, 3408 (2010).

    Article  CAS  Google Scholar 

  20. G. Mpourmpakis, D.G. Vlachos, Langmuir 24 (14), 7465 (2008).

    Article  CAS  Google Scholar 

  21. G. Mpourmpakis, D.G. Vlachos, Phys. Rev. Lett. 102 (15), 155505 (2009).

    Article  Google Scholar 

  22. A.N. Andriotis, M. Menon, G. Froudakis, Phys. Rev. Lett. 85 (15), 3193 (2000).

    Article  CAS  Google Scholar 

  23. J.C. Ganley, F.S. Thomas, E.G. Seebauer, R.I. Masel, Catal. Lett. 96 (3–4), 117 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giannis Mpourmpakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mpourmpakis, G., Vlachos, D.G. Computational-based catalyst design for thermochemical transformations. MRS Bulletin 36, 211–215 (2011). https://doi.org/10.1557/mrs.2011.36

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.36

Navigation