Skip to main content

Advertisement

Log in

Nanostructured materials for improved photoconversion

  • High-Performance Computing for Materials Design to Advance Energy Science
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The drive to make solar energy competitive with conventional energy sources has prompted the investigation of new photoconversion technologies, often referred to as third-generation photovoltaics, which have both lower cost and improved efficiency compared to existing technologies. In that framework, nanostructured materials, such as nanocrystals, nanowires, and nanotubes, occupy a prominent place because of their potential advantages over crystalline or thin-film photovoltaics technologies—high tunability of the bandgap via size control, strong band-edge absorption coefficient, efficient multiple-exciton generation by a single photon, and possibly high up-conversion efficiency. The ability to control the size, shape, composition, and surface termination of nanostructures provides new degrees of freedom that are inaccessible in conventional solar cell architectures. At the same time, the ability to explore this vast configuration space by synthesis and characterization alone is limited, which makes computational interrogation of the electronic and optical properties of nanostructures particularly valuable. In recent years, the convergence of new algorithms and new computational capabilities has made it possible for the first time to perform accurate electronic-structure calculations for large nanostructures. This article reviews recent developments in both semi-empirical and first-principles atomistic electronic structure methods that have led to accurate predictions and to a better understanding of carrier generation, relaxation, and recombination processes in nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. A. Slaoui, R.T. Collins, MRS Bull. 32, 211 (2007).

    Article  Google Scholar 

  2. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  CAS  Google Scholar 

  3. J.M. Pietryga, R.D. Schaller, D. Werder, M.H. Stewart, V.I. Klimov, J.A. Hollingsworth, J. Am. Chem. Soc. 126, 11752 (2004).

    Article  CAS  Google Scholar 

  4. S. Kim, B. Fisher, H.J. Eisler, M.G. Bawendi, J. Am. Chem. Soc. 125, 11466 (2003).

    Article  CAS  Google Scholar 

  5. J. Xiang, W. Lu, Y. Hu, H. Yan, C.M. Lieber, Nature 441, 489 (2006).

    Article  CAS  Google Scholar 

  6. R.D. Schaller, V.I. Klimov, Phys. Rev. Lett. 92, 186601 (2004).

    Article  CAS  Google Scholar 

  7. R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, Al.L. Efros, Nano Lett. 5, 865 (2005).

    Article  CAS  Google Scholar 

  8. R.D. Schaller, V.M. Agranovich, V.I. Klimov, Nat. Phys. 1, 189 (2005).

    Article  CAS  Google Scholar 

  9. S. Wang, M. Khafizov, X. Tu, M. Zheng, T.D. Krauss, Nano Lett. 10, 2381 (2010).

    Article  CAS  Google Scholar 

  10. A.J. Nozik, Inorg. Chem. 44, 6893 (2005).

    Article  CAS  Google Scholar 

  11. V.I. Klimov, D.W. McBranch, Phys. Rev. Lett. 80, 4028 (1998).

    Article  CAS  Google Scholar 

  12. E. Hendry, M. Koeberg, F. Wang, H. Zhang, C. de Mello Donega , D. Vanmaekelbergh, M. Bonn, Phys. Rev. Lett. 96, 057408 (2006).

    Article  CAS  Google Scholar 

  13. A. Pandey, P. Guyot-Sionnest, Science 322, 929 (2008).

    Article  CAS  Google Scholar 

  14. A. Marti , E. Antolin , C.R. Stanley , C.D. Farmer , N. Lopez , P. Diaz, P.G. Linares, A. Luque, Phys. Rev. Lett. 97, 247701 (2006).

    Article  CAS  Google Scholar 

  15. J.R. Chelikowsky, Y. Saad, T.L. Chan, M.L. Tiago, A.T. Zayak, Y.K. Zhou, J. Comput. Theor. Nanosci. 6, 1247 (2009).

    Article  CAS  Google Scholar 

  16. Y. Zhao, Y.H. Kim, M.H. Du, S.B. Zhang, Phys. Rev. Lett. 93, 015502 (2004).

    Article  CAS  Google Scholar 

  17. D. Sánchez-Portal, E. Artacho, J.M. Soler, A. Rubio, P. Ordejon, Phys. Rev. B 59, 12678 (1999).

    Article  Google Scholar 

  18. A. Puzder, A.J. Williamson, F. Gygi, G. Galli, Phys. Rev. Lett. 92, 217401 (2004).

    Article  CAS  Google Scholar 

  19. E. Degoli, G. Cantele, E. Luppi, R. Magri, D. Ninno, O. Bisi, S. Ossicini, Phys. Rev. B 69, 155411 (2004).

    Article  CAS  Google Scholar 

  20. A. Franceschetti, Phys. Rev. B 78, 075418 (2008).

    Article  CAS  Google Scholar 

  21. R. Leitsmann, F. Bechstedt, ACS Nano 11, 3505 (2009).

    Article  CAS  Google Scholar 

  22. K. Burke, J. Werschnik, E.K.U. Gross, J. Chem. Phys. 123, 062206 (2005).

    Article  CAS  Google Scholar 

  23. I. Vasiliev, S. Ogut, J.R. Chelikowsky, Phys. Rev. Lett. 86, 1813 (2001).

    Article  CAS  Google Scholar 

  24. L.X. Benedict, A. Puzder, A.J. Williamson, J.C. Grossman, G. Galli, J.E. Klepeis, J.Y. Raty, O. Pankratov, Phys. Rev. B 68, 085310 (2003).

    Article  CAS  Google Scholar 

  25. L.E. Ramos, J. Paier, G. Kresse, F. Bechstedt, Phys. Rev. B 78, 195423 (2008).

    Article  CAS  Google Scholar 

  26. M.C. Troparevsky, L. Kronik, J.R. Chelikowsky, Phys. Rev. B 65, 033311 (2001).

    Article  CAS  Google Scholar 

  27. M. Lopez del Puerto, M.L. Tiago, J.R. Chelikowsky, Phys. Rev. Lett. 97, 096401 (2006).

    Article  CAS  Google Scholar 

  28. C.F. Craig, W.R. Duncan, O.V. Prezhdo, Phys. Rev. Lett. 95, 163001 (2005).

    Article  CAS  Google Scholar 

  29. M.S. Hybertsen, S.G. Louie, Phys. Rev. Lett. 55, 1418 (1985).

    Article  CAS  Google Scholar 

  30. G. Strinati, Phys. Rev. B 29, 5718 (1984).

    Article  CAS  Google Scholar 

  31. Y.M. Niquet, C. Delerue, G. Allan, M. Lannoo, Phys. Rev. B 62, 5109 (2000).

    Article  CAS  Google Scholar 

  32. A. Franceschetti, H. Fu, L.W. Wang, A. Zunger, Phys. Rev. B 60, 1819 (1999).

    Article  CAS  Google Scholar 

  33. A. Franceschetti, A. Zunger, Phys. Rev. B 62, 2614 (2000).

    Article  CAS  Google Scholar 

  34. L.W. Wang, A. Zunger, J. Phys. Chem. 98, 2158 (1994).

    Article  CAS  Google Scholar 

  35. L.W. Wang, Phys. Rev. Lett. 88, 256402 (2002).

    Article  CAS  Google Scholar 

  36. A. Franceschetti, M.C. Troparevsky, J. Comput. Theor. Nanosci. 6, 1272 (2009).

    Article  CAS  Google Scholar 

  37. A. Franceschetti, Y. Zhang, Phys. Rev. Lett. 100, 136805 (2008).

    Article  CAS  Google Scholar 

  38. L.W. Wang, M. Califano, A. Zunger, A. Franceschetti, Phys. Rev. Lett. 91, 056404 (2003).

    Article  CAS  Google Scholar 

  39. A.J. Nozik, Physica E 14, 115 (2002).

    Article  CAS  Google Scholar 

  40. A. Aharoni, D. Oron, U. Banin, E. Rabani, J. Jortner, Phys. Rev. Lett. 100, 057404 (2008).

    Article  CAS  Google Scholar 

  41. S.V. Kilina, D.S. Kilin, O.V. Prezhdo, ACS Nano 3, 93 (2009).

    Article  CAS  Google Scholar 

  42. G. Allan, C. Delerue, Phys. Rev. B 73, 205423 (2006).

    Article  CAS  Google Scholar 

  43. E. Rabani, R. Baer, Nano Lett. 8, 4488 (2008).

    Article  CAS  Google Scholar 

  44. Z. Lin, A. Franceschetti, M.T. Lusk, ACS Nano (accepted).

  45. M.C. Beard, A.G. Midgett, M.C. Hanna, J.M. Luther, B.K. Hughes, A.J. Nozik Nano Lett. 10, 3019 (2010).

    Article  CAS  Google Scholar 

  46. V.I. Klimov, A.A. Mikhailovsky, D.W. McBranch, C.A. Leatherdale, M.G. Bawendi, Science 11, 1011 (2000).

    Article  Google Scholar 

  47. Y. Zhang, L.W. Wang, A. Mascarenhas, Nano Lett. 7, 1264 (2007).

    Article  CAS  Google Scholar 

  48. Z.G. Wu, J.B. Neaton, J.C. Grossman, Nano Lett. 9, 2418 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Franceschetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franceschetti, A. Nanostructured materials for improved photoconversion. MRS Bulletin 36, 192–197 (2011). https://doi.org/10.1557/mrs.2011.35

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.35

Navigation