Skip to main content

Advertisement

Log in

Probing bonding and electronic structure at atomic resolution with spectroscopic imaging

  • Spectroscopic imaging in electron microscopy
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

By measuring the energy losses of high-energy electrons transmitted through a thin sample, electron energy-loss spectroscopy provides information on the local electronic structure in materials. Using electron beams smaller than 0.1 nm, the technique provides exquisite sensitivity to changes in valence and coordination of the excited atoms such that local changes in the bonding environment are probed with a resolution approaching the Ångstrøm level, with an energy resolution competitive with complementary techniques such as x-ray absorption spectroscopy. With the development of spectroscopic imaging in the scanning transmission electron microscope, this technique can be used to map, at the atomic level, the composition of atomic columns and the valence of atoms at defects, interfaces, and surfaces. Recent applications of this technique are provided as examples showing the potential of the method for materials research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. O.L. Krivanek, C.C. Ahn, R.B. Keeney, Ultramicroscopy 22, 103 (1987).

    Article  CAS  Google Scholar 

  2. O.L. Krivanek, A.J. Gubbens, N. Dellby, Microsc. Microanal. Microstruct. (EDP Sciences, New York, 1991).

  3. H. Raether, Excitations of Plasmons and Interband Transitions by Electrons (Springer-Verlag, New York, 1980).

  4. J. Fink, in Unoccupied Electronic States, J.C. Fuggle, J.E. Inglesfi eld, Eds. (Springer-Verlag, Berlin, 1992), p. 139.

  5. M. Terauchi, M. Tanaka, K. Tsuno, M. Ishida, J. Microsc. 194, 203 (1999).

    Article  CAS  Google Scholar 

  6. J. Fink, Adv. Electron. Electron Phys. 75, 121 (1989).

  7. R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer, New York, 2011).

  8. R.F. Egerton, Ultramicroscopy (2012), in press.

  9. G.A. Botton, in Science of Microscopy, P. Hawkes, J.C.H. Spence, Eds. (Springer, New York, 2007).

  10. G. Radtke, G.A. Botton, in STEM, P. Nellist, S.J. Pennycook, Eds. (Springer, New York, 2010).

  11. L.A.J. Garvie, A.J. Craven, R. Brydson, Am. Mineral. 79, 411 (1994).

  12. P.J. Fallon, L.M. Brown, Diamond Relat. Mater. 2, 1004 (1993).

  13. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998).

  14. G. Radtke, A. Saul, H.A. Dabkowska, G.M. Luke, G.A. Botton, Phys. Rev. Lett. 105, 036401 (2010).

  15. S. Lazar, G.A. Botton, H.W. Zandbergen, Ultramicroscopy 106, 1091 (2006).

  16. S. Lazar, G.A. Botton, M.-Y. Wu, F.D. Tichelaar, H.W. Zandbergen, Ultramicroscopy 96, 535 (2003).

  17. M. Stöger-Pollach, H. Franco, P. Schattschneider, S. Lazar, B. Schaffer, W. Grogger, H.W. Zandbergen, Micron 37, 396 (2006).

  18. M. Stöger-Pollach, Micron 41, 577 (2011).

  19. M. Stöger-Pollach, Micron 39, 1092 (2008).

  20. D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, G.A. Botton, Nano Lett. 11, 1499 (2011).

  21. R.J. Nicholls, D.A. Pankhurst, G.A. Botton, S. Lazar, D.J.H. Cockayne, in Electron Microscopy and Analysis 2003 ( Institute of Physics Conference Series, 2004), Vol. 179, pp. 443–446.

  22. A.S. Sefat, G. Amow, M.-Y. Wu, G.A. Botton, J.E. Greedan, J. Solid State Chem. 178, 1008 (2005).

  23. M. Abbate, F.M.F. de Groot, J.C. Fuggle, A. Fujimori, Y. Tokura, Y. Fujishima, O. Strebel, M. Domke, G. Kaindl, J. van Elp, B.T. Thole, G.A. Sawatzky, M. Sacchi, K. Tsuda, Phys. Rev. B 44, 5419 (1991).

  24. K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, K. Ishizuka, Nature 450, 702 (2007).

  25. M. Bosman, V.J. Keast, J.L. Garcia-Munoz, A.J. D’Alfonso, S.D. Findlay, L.J. Allen, Phys. Rev. Lett. 99, 086102 (2007).

  26. D.A. Muller, L.F. Kourkoutis, M.F. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Science 319, 1073 (2008).

  27. G.A. Botton, S. Lazar, C. Dwyer, Ultramicroscopy 110, 926 (2010).

  28. S. Lazar, Y. Shao, L. Gunawan, R. Nechache, A. Pignolet, G.A. Botton, Microsc. Microanal. 16, 416 (2010).

  29. O. Gautreau, C. Harnagea, L. Pintille, M. Alexe, A. Pignolet, J. Phys. D 41, 112002 (2008).

  30. J. Gazquez, W. Luo, M.P. Oxley, M. Prange, M.A. Torija, M. Sharma, C. Leighton, S.T. Panteledes, S.J. Pennycook, M. Varela, Nano Lett. 11, 973 (2011).

  31. M. Haruta, H. Kurata, H. Komatsu, Y. Shimakawa, S. Isoda, Phys. Rev. B 80, 165123 (2009).

  32. M. Haruta, H. Kurata, K. Matsumoto, S. Inoue, Y. Shimakawa, S. Isoda, J. Appl. Phys. 110, 033708 (2011).

  33. L. Fitting Kourkoutis, J.H. Lee, J.H. Song, H.Y. Hwang, D.G. Schlom, D.A. Muller, Microsc. Microanal. 16 (Supp. 2), 1400 (2010).

  34. L. Fitting Kourkoutis, in 17th International Microscopy Congress, Rio De Janeiro (2010), pp. 354–355.

  35. L. Fitting Kourkoutis, Philos. Mag. 80, 4731 (2010).

  36. H. Tan, S. Turner, E. Yücelen, J. Verbeeck, G. Van Tandeloo, Phys. Rev. Lett. 107, 107602 (2011).

    Article  Google Scholar 

  37. S. Turner, S. Lazar, B. Freitag, R. Egoavil, J. Verbeeck, S. Put, Y. Strauven, G. Van Tandeloo, Nanoscale 3, 3385 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to several current and past collaborators who have been involved in published original work presented here or for providing samples used in that work, in parti cular, S. Lazar, H. Zandbergen, L. Gunawan, Y. Shao, A. Pignolet, R. Nicholls, G. Radtke, and C. Jia. Some of the work presented here was carried out at the Canadian Centre for Electron Microscopy, at McMaster University, Ontario, and Delft University of Technology (TUD). In particular, the author is indebted to Professor H. Zandbergen for access to the TUD instrument and NWO funding. Finally, the author is grateful to the Natural Sciences and Engineering Research Council of Canada for supporting his research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi A. Botton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botton, G.A. Probing bonding and electronic structure at atomic resolution with spectroscopic imaging. MRS Bulletin 37, 21–28 (2012). https://doi.org/10.1557/mrs.2011.336

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.336

Navigation