Skip to main content

Advertisement

Log in

Surface modification and fabrication of 3D nanostructures by atomic layer deposition

  • Progress and future directions for atomic layer deposition and ALD-based chemistry
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Atomic layer deposition (ALD) not only presents a direct way to prepare nanomaterials when combined with templates, but also allows surface engineering to fine-tune the properties of the material. Here, we review recent progress in the field of nanostructured materials and devices that have been fabricated by ALD. Various materials, including semiconducting, magnetic, noble metallic, and insulating materials, can be used to form three-dimensional (3D), complex nanostructures with controlled composition and physical properties. We begin this review with ALD nanomaterials that can be prepared from porous templates with a 2D pore arrangement, such as anodic aluminum oxide, and advance toward opal structures with a 3D pore arrangement. We also discuss surface engineering by ALD on existing nanowires/nanotubes, devices, and chemical patterns that has the potential for application in high-performance transistors, sensors, and green energy conversion. Finally, we provide perspectives for future device applications that could arise from ALD nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. B.S. Lim, A. Rahtu, R.G. Gordon, Nat. Mater. 2, 749 (2003).

    Google Scholar 

  2. R.L. Puurunen, J. Appl. Phys. 97, 121301 (2005).

    Google Scholar 

  3. M. Knez, K. Nielsch, L. Niinistö, Adv. Mater. 19, 3425 (2007).

  4. S.M. George, Chem. Rev. 110, 111 (2010).

  5. A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, Nano Lett. 7, 2183 (2007).

  6. A.B.F. Martinson, J.W. Elam, J. Liu, M.J. Pellin, T.J. Marks, J.T. Hupp, Nano Lett. 8, 2862 (2008).

  7. J.W. Elam, D.A. Baker, A.B.F. Martinson, M.J. Pellin, J.T. Hupp, J. Phys. Chem. C 112, 1938 (2008).

  8. C.-C. Chao, C.-M. Hsu, Y. Cui, F.B. Prinz, ACS Nano (2011), doi:10.1021/nn201354p.

  9. I.D. Scott, Y.S. Jung, A.S. Cavanagh, Y. Yan, A.C. Dillon, S.M. George, S.-H. Lee, Nano Lett. 11, 414 (2011).

  10. Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W.D. Nix, Y. Cui, Nano Lett., doi:10.1021/n1201470j.

  11. G.R. Patzke, F. Krumeich, R. Nesper, Angew. Chem. Int. Ed. 41, 2446 (2002).

  12. P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011).

  13. S.A. Morin, M.J. Bierman, J. Tong, S. Jin, Science 328, 476 (2010).

  14. C.-J. Jia, L.-D. Sun, Z.-G. Yan, L.-P. You, F. Luo, X.-D. Han, Y.-C. Pang, Z. Zhang, C.-H. Yan, Angew. Chem. Int. Ed. 44, 4328 (2005).

  15. C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M.M. Sung, H. Shin, Chem. Mater. 20, 756 (2008).

  16. H.J. Shin, D.K. Jeong, J.G. Lee, M.M. Sung, J.Y. Kim, Adv. Mater. 16, 1197 (2004).

  17. M.S. Sander, M.J. Côté, W. Gu, B.M. Kile, C.P. Tripp, Adv. Mater. 16, 2052 (2004).

  18. J.W. Elam, D. Routkevitch, P.P. Mardilovich, S.M. George, Chem. Mater. 15, 3507 (2003).

  19. M. Knez, A. Kadri, C. Wege, U. Gösele, H. Jeske, K. Nielsch, Nano Lett. 6, 1172 (2006).

  20. C. Bae, Y. Yoon, H. Yoo, D. Han, J. Cho, B.H. Lee, M.M. Sung, M.G. Lee, J. Kim, H. Shin, Chem. Mater. 21, 2574 (2009).

  21. J. Bachmann, R. Zierold, Y.T. Chong, R. Hauert, C. Sturm, R. Schmidt-Grund, B. Rheinländer, M. Grundmann, U. Gösele, K. Nielsch, Angew. Chem. Int. Ed. 47, 6177 (2008).

  22. (a) J. Lee, S. Farhangfar, R. Yang, R. Scholz, M. Alexe, U. Gösele, J. Lee, K. Nielsch, J. Mater. Chem. 19, 7050 (2009). (b) S.K. Panda, D. Han, H. Yoo, H. Shin, H. Park, J. Xu, Electrochem. Solid-State Lett. 14, E21 (2011).

  23. L.K. Tan, A.S.M. Chong, X.S.E. Tang, H. Gao, J. Phys. Chem. C 111, 4964 (2007).

  24. R. Zierold, Z. Wu, J. Biskupek, U. Kaiser, J. Bachmann, C.E. Krill III, K. Nielsch, Adv. Funct. Mater. 21, 226 (2011).

  25. J. Bachmann, J. Jing, M. Knez, S. Barth, H. Shen, S. Mathur, U. Gösele, K. Nielsch, J. Am. Chem. Soc. 129, 9554 (2007).

  26. J. Escrig, J. Bachmann, J. Jing, M. Daub, D. Altbir, K. Nielsch, Phys. Rev. B 77, 214421 (2008).

  27. M. Rooth, A. Johansson, K. Kukli, J. Aarik, M. Boman, A. Hårsta, Chem. Vap. Dep. 14, 67 (2008).

  28. K. Pitzschel, J.M. Montero Moreno, J. Escrig, O. Albrecht, K. Nielsch, J. Bachmann, ACS Nano 3, 3463 (2009).

  29. Y.T. Chong, E.M.Y. Yau, K. Nielsch, J. Bachmann, Chem. Mater. 22, 6506 (2010).

  30. M. Daub, M. Knez, U. Gösele, K. Nielsch, J. Appl. Phys. 101, 09J111 (2007).

  31. W.-H. Kim, H.-B.-R. Lee, K. Heo, Y.K. Lee, T.-M. Chung, C.G. Kim, S. Hong, J. Heo, H. Kim, J Electrochem. Soc. 158, D1 (2011).

  32. D.-J. Lee, S.-S. Yim, K.-S. Kim, S.-H. Kim, K.-B. Kim, Electrochem. Solid-State Lett. 11, K61 (2008).

  33. S. Farhangfar, R.B. Yang, M. Pelletier, K. Nielsch, Nanotechnology 20, 325602 (2009).

  34. R.B. Yang, J. Bachmann, M. Reiche, J.W. Gerlach, U. Gösele, K. Nielsch, Chem. Mater. 21, 2586 (2009).

  35. M. Rooth, PhD dissertation, Uppsala University (2008).

  36. K.M. Ho, C.T. Chan, C.M. Soukoulis, Phys. Rev. Lett. 65, 3125 (1990).

  37. K.M. Leung, Y.F. Liu, Phys. Rev. Lett. 65, 2646 (1990).

  38. E. Yablonovitch, T.J. Gmitter, K.M. Leung, Phys. Rev. Lett. 67, 2295 (1991).

  39. J.S. King, E. Graugnard, C.J. Summers, Adv. Mater. 17, 1010 (2005).

  40. A. Rugge, J.S. Becker, R.G. Gordon, S.H. Tolbert, Nano Lett. 3, 1293 (2003).

  41. J.S. King, C.W. Neff, C.J. Summers, W. Park, S. Blomquist, E. Forsythe, D. Morton, Appl. Phys. Lett. 83, 2566 (2003).

  42. E. Graugnard, V. Chawla, D. Lorang, C.J. Summers, Appl. Phys. Lett. 89, 211102 (2006).

  43. E. Graugnard, J.S. King, D.P. Gaillot, C.J. Summers, Adv. Funct. Mater. 16, 1187 (2006).

  44. M. Scharrer, X. Wu, A. Yamilov, H. Cao, R.P.H. Chang, Appl. Phys. Lett. 86, 151113 (2005).

  45. J.S. King, D.P. Gaillot, E. Graugnard, C.J. Summers, Adv. Mater. 18, 1063 (2006).

  46. A. Rugge, J.-S. Park, R.G. Gordon, S.H. Tolbert, J. Phys. Chem. B 109, 3764 (2005).

  47. R.G. Gordon, D. Hausmann, E. Kim, J. Shepard, Chem. Vap. Dep. 9, 6773 (2003).

  48. I. Perez, E. Robertson, P. Banerjee, L. Henn-Lecordier, S.J. Son, S.B. Lee, G.W. Rubloff, Small 8, 1223 (2008).

  49. S.O. Kucheyev, J. Biener, T.F. Baumann, Y.M. Wang, A.V. Hamza, Z. Li, D.K. Lee, R.G. Gordon, Langmuir 24, 943 (2008).

  50. R.B. Yang, N. Zakharov, O. Moutanabbir, K. Scheerschmidt, L.-M. Wu, U. Gösele, J. Bachmann, K. Nielsch, J. Am. Chem. Soc. 132, 7592 (2010).

  51. R. Könenkamp, Phys. Rev. B, 61, 11057 (2000).

  52. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003).

  53. J. Hwang, B. Min, J. Lee, K. Keem, K. Cho, M.Y. Sung, M.S. Lee, S. Kim, Adv. Mater. 16, 422 (2004).

  54. H.J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, U. Gösele, Nat. Mater. 5, 627 (2006).

  55. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, H.J. Dai, Nat. Mater. 1, 241 (2002).

  56. D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, H. Kim, P.C. McIntyre, T. Krishnamohan, K.C. Saraswat, Appl. Phys. Lett. 83, 2432 (2003).

  57. Y. Lu, S. Bangsaruntip, X. Wang, L. Zhang, Y. Nishi, H. Dai, J. Am. Chem. Soc. 128, 3518 (2006).

  58. D.B. Farmer, R.G. Gordon, Nano Lett. 6, 699 (2006).

  59. R. Chen, S.F. Bent, Adv. Mater. 18, 1086 (2006).

  60. K.S. Park, E.K. Seo, Y.R. Do, K. Kim, M.M. Sung, J. Am. Chem. Soc. 128, 858 (2006).

  61. A. Sinha, D.W. Hess. C.L. Henderson, J. Vac. Sci., Technol. B 24, 2523 (2006).

  62. J.R. Liu, Y.B. Mao, E. Lan, D.R. Banatao, G.J. Forse, J. Lu, H.O. Blom, T.O. Yeates, B. Dunn, J.P. Chang, J. Am. Chem. Soc. 130, 16908 (2008).

  63. C. Bae, H. Shin, J. Moon, M.M. Sung, Chem. Mater. 18, 1085 (2006).

  64. C. Bae, H. Kim, H. Shin, Chem. Comm. 47, 5145 (2011).

  65. J.-R. Li, J.C. Garno, Nano Lett. 8, 1916 (2008).

  66. C. Bae, J. Moon, H. Shin, J. Kim, M.M. Sung, J. Am. Chem. Soc. 129, 14232 (2007).

  67. R.H.A. Ras, E. Sahramo, J. Malm, J. Raula, M. Karppinen, J. Am. Chem. Soc. 130, 11252 (2008).

  68. L. Wang, L. Xia, G. Li, S. Ravaine, X.S. Zhao, Angew. Chem. Int. Ed. 47, 4725 (2008).

  69. S.C. Glotzer, M.J. Solomon, Nat. Mater. 6, 557 (2007).

  70. S.-M. Yang, S.-H. Kim, J.-M. Lim, G.-R. Yi, J. Mater. Chem. 18, 2177 (2008).

  71. F. Li, D.P. Josephson, A. Stein, Angew. Chem. Int. Ed. 50, 360 (2011).

  72. R. Ji, PhD dissertation, Martin-Luther-Universität Halle-Wittenberg (2008).

  73. G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, G. Ghibaudo, IEEE Trans. Dev. Mater. Reliab. 5, 5 (2005).

  74. H. Kim, P.C. McIntyre, J. Korean Phys. Soc. 48, 5 (2006).

  75. J. Appenzeller, Proc. IEEE 96, 201 (2008).

  76. H. Kim, H.-B.-R. Lee, W.-J. Maeng, Thin Solid Films 517, 2563 (2009).

  77. J.B. Kim, C. Fuentes-Hernandez, D.K. Hwang, W.J. Potscavage Jr., H. Cheun, B. Kippelen, Org. Electron. 12, 45 (2011).

  78. K.M. Choi, G.W. Hyung, J.W. Yang, J.R. Koo, Y.K. Kim, S.J. Kwon, E.S. Cho, Mol. Cryst. Liq. Cryst. 529, 131 (2011).

  79. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004).

  80. D.H. Cho, S.H. Yang, J.-H. Shin, C.W. Byun, M.K. Ryu, J.I. Lee, C.S. Hwang, H.Y. Chu, J. Korean Phys. Soc. 54, 531 (2009).

  81. S.-W. Nam, M.-H. Lee, S.-H. Lee, D.-J. Lee, S.M. Rossnagel, K.-B. Kim, Nano Lett. 10, 3324 (2010).

  82. X. Liu, X. Deng, P. Sciortino Jr., M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O’Brien, J.J. Wang, Nano Lett. 6, 2723 (2006).

  83. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, M. Knez, Adv. Funct. Mater. 20, 2053 (2010).

  84. http://www.beneq.com/barrier-and-passivation-layers.html.

  85. H. Zhang, X. Yu, P.V. Braun, Nat. Nanotechnol. 6, 277 (2011).

  86. V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gösele, Small 2, 85 (2006).

  87. J. Goldberger, A.I. Hochbaum, R. Fan, P. Yang, Nano Lett. 6, 973 (2006).

  88. H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, M. Meyyappan, Nano Lett. 4, 1247 (2004).

  89. K.J. Park, J.M. Doub, T. Gougousi, G.N. Parsons, Appl. Phys. Lett. 86, 051903 (2005).

  90. E.K. Seo, J.W. Lee, H.M. Sung-Suh, M.M. Sung, Chem. Mater. 16, 1878 (2004).

    Google Scholar 

  91. L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger, F. Lévy, J. Appl. Phys. 75, 633 (1994).

    Google Scholar 

Download references

Acknowledgments

C.B. acknowledges the Alexander von Humboldt Foundation for a postdoctoral fellowship (3.2-KOR/1138516 STP) and would like to thank William Töllner for helpful discussions. H.S. acknowledges financial support from the NRL program (2007–0057024), the Nano R&D program (2009–0082717), and CMPS (R11–2005–048–00000–0) of Korean NRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changdeuck Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, C., Shin, H. & Nielsch, K. Surface modification and fabrication of 3D nanostructures by atomic layer deposition. MRS Bulletin 36, 887–897 (2011). https://doi.org/10.1557/mrs.2011.264

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.264

Navigation