Skip to main content

Advertisement

Log in

From mud to microbial electrode catalysts and conductive nanomaterials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Dissimilatory metal-reducing bacteria (DMRB) are a fascinating group of microorganisms that inhabit many natural environments. They possess a distinct capability wherein they can acquire energy by coupling oxidation of organic matter with reduction of insoluble oxidants such as mineral deposits. This capability requires that DMRB transfer respired electrons to their outer surface where electron transfer can occur to an insoluble oxidant. This is distinct from the dominant paradigm, wherein soluble oxidants are transported into microbes for reduction during metabolism. This unique extracellular electron transfer (EET) capability of DMRB extends to reduction of electrodes on which they can proliferate and form persistent films (biofilms). This capability makes DMRB useful as anode catalysts in microbial fuel cells for alternative energy generation and for degradation of organic wastes. In the case of Geobacter spp., anode biofilms can grow to be many microbes thick. In such biofilms, individual microbes contribute to a flux of electrons to the underlying electrode surface, which may be many cell lengths away, confounding long-held notions about the inability of microbes to engage in such long-range EET. This article describes the electrode-reducing ability of DMRB and the latest results describing the mechanism of long-range extracellular electron transfer, which appears to involve filamentous appendages termed nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. P.N. Froelich, G.P. Klinkhammer, M.L. Bender, N.A. Luedtke, G.R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman, V. Maynard, Geochim. Cosmochim. Acta 43, 1075 (1979).

    Google Scholar 

  2. J.E. Schindler, K.R. Honick, Limnol. Oceanogr. 16, 837 (1971).

  3. C.E. Reimers, L.M. Tender, S. Fertig, W. Wang, Environ. Sci. Technol. 35, 192 (2001).

  4. R. Alberte, H.J. Bright, C. Reimers, L.M. Tender, United States Patent 6,913,854.

  5. B.M.L. Rao, J.T. San Giacomo, Jr., W. Kobasz, D.S. Hosom, R.A. Weller, A.A. Hinton, Sea Technol. 33 (11), 63 (1992).

  6. S.D. William, P.C. Wilcock, X.X. Kauffman, J. Power Sources 66, 71 (1997).

  7. D.R. Bond, D.E. Holmes, L.M. Tender, D.R. Lovley, Science 295, 483 (2002).

  8. M.C. Potter, R. Soc. B 84, 260 (1911).

  9. B. Cohen, J. Bacteriol. 21, 18 (1931).

  10. I. Karube, T. Matasunga, S. Suzuki, S. Tsuru, Biotechnol. Bioeng. 19, 1727 (1976).

  11. G.T.R. Palmore, G.M. Whitesides, Microbial and Enzymatic Biofuel Cells, M.E. Himmel, J.O. Baker, R.P. Overend, Eds., Symposium on Enzymatic Conversion of Biomass for Fuels Production presented at the 205th National Meeting of the American-Chemical-Society, Denver, CO, 28 March–2 April, 1993.

  12. R.M. Allen, H.P. Bennetto, Appl. Biochem. Biotechnol. 39/40, 27 (1993).

  13. H. Yi, K.P. Nevin, B.C. Kim, A.E. Franks, A. Klimes, L.M. Tender, D.R. Lovley, Biosens. Bioelectron. 24 (12), 3498 (2009).

  14. L.M. Tender, C.E. Reimers, H.A. Stecher, D.E. Holmes, D.R. Bond, D.A. Lowy, K. Pilobello, S.J. Fertig, D.R. Lovley, Nat. Biotechnol. 20 (8), 821 (2002).

  15. A. Heller, B. Feldman, Chem. Rev. 108 (7), 2482 (2008).

  16. C.E. Reimers, H.A. Stecher, III, P. Girguis, L.M. Tender, N. Ryckelynck, P. Whaling, Geobiology, Geobiology, 2, 123 (2006).

  17. L.M. Tender, S.A. Gray, E. Groveman, D.A. Lowy, P. Kauffman, J. Melhado R.C. Tyce, D. Flynn, R. Petrecca, J. Dobarro, J. Power Sources 179 (2), 571–575 (2008).

  18. Y. Gong, S.E. Radachowsky, M. Wolf, M.E. Nielsen, P.R. Girguis, C.E. Reimers, Environ. Sci. Technol. 45 (11), 5047 (2011).

  19. A.Q. Wotawa-Bergen, D.B. Chadwick, K.E. Richter, L.M. Tender, C.E. Reimers, Y. Gong, IEEE Conference, Seattle, WA (2010); doi 10.1109/ OCEANS.2010.5664612.

  20. E.F. DeLong, P. Chandler, Nat. Biotechnol. 20, 788 (2002).

  21. L.M. Tender, United States Patent 8,012,615.

  22. L. de Schamphelaire, L. van den Bossche, H.S. Dang, M. Hofte, N. Boon K. Rabaey, W. Verstraete, Environ. Sci. Policy, 42 (8) 3053 (2008).

  23. B.E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, Environ. Sci. Technol. 40 (17), 5181 (2006).

  24. S.K. Chaudhuri, D.R. Lovley, Nat. Biotechnol. 21 (10), 1229 (2003).

  25. K. Rabaey, W. Verstraete, Trends Biotechnol. 23 (6), 291 (2005).

  26. R.A. Rozendal, H.V.M. Hamelers, C.J.N. Buisman, Environ. Sci. Technol. 40 (17), 5206 (2006).

  27. K.J. Rae, C. Shaoan, OH. Sang-Eun, B.E. Logan, Environ. Sci. Technol.41 (3), 1004 (2007).

  28. F. Zhao, F. Harnisch, U. Schröder, F. Scholz, P. Bogdanoff, I. Herrmann Environ Sci Technol. 40 (17), 5193 (2006).

  29. R.A. Rozendal, H.V.M. Hamelers, K. Rabaey, J. Keller, C.J.N. Buisman Trends Biotechnol. 26 (8), 450 (2008).

  30. H. Liu, R. Ramnarayanan, B.E. Logan, Environ. Sci. Technol. 38 (7), 2281 (2004).

  31. L.T. Angenent, K. Karim, M.H. Al-Dahhan, B.A. Wrenn, R. Domiguez-Espinosa, Trends Biotechnol. 22 (9), 477 (2004).

  32. B. Min, J.R. Kim, S.E. Oh, J.M. Regan, B.E. Logan, Water Res. 39 (20), 4961 (2005).

  33. P. Aelterman, K. Rabaey, P. Clauwaert, W. Verstraete, Water Sci. Technol. 54 (8), 9 (2006).

  34. E.C. Salas, Z.S.A. Luttge, J.M. Tour, ACS Nano, 4 (8), 4852 (2010).

  35. D.R. Lovley, Nat. Rev. Microbiol. 1 (1), 35 (2003).

  36. S.M. Strycharz, T.L. Woodard, J.P. Johnson, K.P. Nevin, R.A. Sanford F.E. Löffler, D.R. Lovley, Appl. Environ. Microbiol. 74 (19), 5943 (2008).

  37. K.B. Gregory, D.R. Lovley, Environ. Sci. Technol. 39 (22), 8943 (2005).

  38. N.P. Kelly, S.A. Hensley, A.E. Franks, Z.M. Summers, J. Ou, T.L. Woodard O.L. Snoeyenbos-West, D.R. Lovley, Appl. Environ. Microbiol. 2882 (2011).

  39. S. Malik, E. Drott, P. Grisdela, J. Lee, C. Lee, L.M. Tender, Energy Environ. Sci. 2 (3), 292 (2009).

  40. R.A. Timmers, M. Helder, K.J.J. Steinbusch, Trends Biotechnol. 29 (1), 41 (2011).

  41. M. Rosenbaum, H.Zhen, L.T. Angenent, Curr. Opin. Biotechnol. 21 (3), 259 (2010).

  42. N. Koichi, H. Kazuhito, W. Kazuya, Appl. Microbiol. Biotechnol.86 (3), 957 (2010).

  43. Z. Yongjin, P. John, B.R. Blake, B.V. Ilia, Biotechnol. Bioeng. 104 (5), 939 (2009).

  44. E. Marsili, J. Sun, D.R. Bond, Electroanalysis, 22 (7–8), 865 (2010).

  45. Y. Liu, H. Kim, R.R. Franklin, D.R. Bond, Chem. Phys. Chem. in press (2011).

  46. C. Leang, X. Qian, T. Mester, D.R. Lovley, Appl. Environ. Microbiol. 76 (12), 4080 (2010).

  47. K. Inoue, C. Leang, A.E. Franks, T.L. Woodard, K.P. Nevin, D.R. Lovley Environmental Microbiology Reports (2010).

  48. G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen, D.R. Lovley Nature 435, 1098 (2005).

  49. M. El-Naggar, Y. Gorby, W. Xia, K.N. Nealson, Biophys. J. 100 (3), 132 (2008).

  50. Y. Gorby, S. Yanina, J. McLean, K. Rosso, D. Moyles, A. Dohnalkova, T. Beveridge, I. Chang, B. Kim, K. Kim, Proceedings of the National Academy of Sciences 103, 11358 (2006).

  51. S.M. Strycharz-Glaven, R.M. Snider, A. Guiseppi-Elie, L.M. Tender, Energy and Environmental Science (2011), doi:10.1039/CIEEØ1753E.

  52. E. Dalton, N. Surridge, J. Jernigan, K. Wilbourn, J. Facci, R. Murray, Chemical Physics141, 143 (1990).

  53. H. Richter, K.P. Nevin, H. Jia, D.A. Lowy, D.R. Lovley, L.M. Tender, Energy Environ. Sci. 2, 506 (2009).

  54. S.M. Strycharz, A.P. Malanoski, R.M. Snider, H. Yi, D.R. Lovley, L.M. Tender Energy Environ. Sci. 4, 896 (2011).

  55. N.S. Malvankar, M. Vargas, K.P. Nevin, A.E. Franks, C. Leang, B.-C. Kim K. Inoue, T. Mester, S.F. Covalla, J.P. Johnson, V.M. Rotello, M.T. Tuominen, D.R. Lovley Nature Nanotechnology 6, 533 (2011), doi:10.1038/nnano.2011.119.

    Google Scholar 

Download references

Acknowledgements

L.T. is grateful for support from DARPA (Robert Nowak, program manager) and continued support from ONR (Harold Bright and Linda Chrisey, program managers) and the Naval Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard M. Tender.

Additional information

The following article is based on a Symposium X: Frontiers of Materials Research presentation given by Leonard M. Tender of the Naval Research Laboratory, Washington, DC, on April 26, 2011, at the Materials Research Society Spring Meeting in San Francisco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tender, L.M. From mud to microbial electrode catalysts and conductive nanomaterials. MRS Bulletin 36, 800–805 (2011). https://doi.org/10.1557/mrs.2011.237

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.237

Navigation