Skip to main content

Advertisement

Log in

The effects of percolation in nanostructured transparent conductors

  • Solution-processed transparent electrodes
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Networks of nanoscale conductors such as carbon nanotubes, graphene, and metallic nanowires are promising candidates to replace metal oxides as transparent conductors. However, very few previous reports have described nanostructured thin films that reach the standards required by industry for high-performance transparent electrodes. In this review, we analyze the sheet resistance and transmittance data extracted from published literature for solution processed, nanostructured networks. In the majority of cases, as their thickness is reduced below a critical value, nanoconductor networks undergo a transition from bulklike to percolative behavior. Such percolative behavior is characteristic of sparse networks with limited connectivity and few continuous conductive paths. This transition tends to occur for films with a transmittance between 50% and 90%, which means that the properties of highly transparent films are predominately limited by percolation. Consequently, to achieve low resistance coupled with high transparency, the networks must be much more conductive than would otherwise be the case. We show that highly conductive networks of metallic nanowires appear to be the most promising candidate to replace traditional transparent electrode materials from a technical standpoint. However, many other factors, including cost, manufacturability, and stability, will have to be addressed before commercialization of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47 (2005).

    Google Scholar 

  2. R.G. Gordon, MRS Bull. 25, 52 (2000).

  3. D.S. Hecht, L.B. Hu, G. Irvin, Adv. Mater. 23, 1482 (2011).

  4. D.R. Cairns, G.P. Crawford, Proc. IEEE 93, 1451 (2005).

  5. D.R. Cairns, R.P. Witte, D.K. Sparacin, S.M. Sachsman, D.C. Paine, G.P. Crawford, R.R. Newton, Appl. Phys. Lett. 76, 1425 (2000).

  6. Z. Chen, B. Cotterell, W. Wang, Eng. Fract. Mech. 69, 597 (2002).

  7. Y. Leterrier, L. Medico, F. Demarco, J.A.E. Manson, U. Betz, M.F. Escola M.K. Olsson, F. Atamny, Thin Solid Films 460, 156 (2004).

  8. W. den Boer, G.S. Smith, J. SID 13, 199 (2005).

  9. M.W. Rowell, M.D. McGehee, Energy Environ. Sci. 4, 131 (2011).

  10. V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, J.N. Coleman, Small 7 (18), 2621 (2011).

  11. C. Schrage, S. Kaskel, ACS Appl. Mater. Interfaces 1, 1640 (2009).

  12. B. Dan, G.C. Irvin, M. Pasquali, ACS Nano 3, 835 (2009).

  13. S. De, P.E. Lyons, S. Sorrel, E.M. Doherty, P.J. King, W.J. Blau, P.N. Nirmalraj, J.J. Boland, V. Scardaci, J. Joimel, J.N. Coleman, ACS Nano 3, 714 (2009).

  14. H.Z. Geng, K.K. Kim, K.P. So, Y.S. Lee, Y. Chang, Y.H. Lee, J. Am. Chem. Soc. 129, 7758 (2007).

  15. L. Hu, D.S. Hecht, G. Gruner, Nano Lett. 4, 2513 (2004).

  16. Z.C. Wu, Z.H. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Science 305, 1273 (2004).

  17. Z.R. Li, H.R. Kandel, E. Dervishi, V. Saini, Y. Xu, A.R. Biris, D. Lupu, G.J. Salamo, A.S. Biris, Langmuir 24, 2655 (2008).

  18. S. Manivannan, J.H. Ryu, J. Jang, K.C. Park, J. Mater. Sci. - Mater. Electron. 21, 595 (2010).

  19. S.F. Pei, J.H. Du, Y. Zeng, C. Liu, H.M. Cheng, Nanotechnology 20, 235707 (2009).

  20. G. Fanchini, S. Miller, L.B. Parekh, M. Chhowalla, Nano Lett. 8, 2176 (2008).

  21. B.B. Parekh, G. Fanchini, G. Eda, M. Chhowalla, Appl. Phys. Lett. 90, 121913 (2007).

  22. H.E. Unalan, G. Fanchini, A. Kanwal, A. Du Pasquier, M. Chhowalla, Nano Lett. 6, 677 (2006).

  23. B. Chandra, A. Afzali, N. Khare, M.M. El-Ashry, G.S. Tulevski, Chem. Mater. 22, 5179 (2010).

  24. Y. Wang, C.A. Di, Y.Q. Liu, H. Kajiura, S.H. Ye, L.C. Cao, D.C. Wei, H.L. Zhang, Y.M. Li, K. Noda, Adv. Mater. 20, 4442 (2008).

  25. Z.R. Li, H.R. Kandel, E. Dervishi, V. Saini, A.S. Biris, A.R. Biris, D. Lupu, Appl. Phys. Lett. 91, 053115 (2007).

  26. H. Tantang, J.Y. Ong, C.L. Loh, X.C. Dong, P. Chen, Y. Chen, X. Hu, L.P. Tan, L.J. Li, Carbon 47, 1867 (2009).

  27. H.Z. Geng, D.S. Lee, K.K. Kim, S.J. Kim, J.J. Bae, Y.H. Lee, J. Korean Phys. Soc. 53, 979 (2008).

  28. Y.T. Park, A.Y. Ham, J.C. Grunlan, J. Mater. Chem. 21, 363 (2011).

  29. H.Z. Geng, K.K. Kim, C. Song, N.T. Xuyen, S.M. Kim, K.A. Park, D.S. Lee, K.H. An, Y.S. Lee, Y. Chang, Y.J. Lee, J.Y. Choi, A. Benayad, Y.H. Lee, J. Mater. Chem. 18, 1261 (2008).

  30. S.B. Yang, B.S. Kong, J. Geng, H.T. Jung, J. Phys. Chem. C 113, 13658 (2009).

  31. D.W. Shin, J.H. Lee, Y.H. Kim, S.M. Yu, S.Y. Park, J.B. Yoo, Nanotechnology 20, 475703 (2009).

  32. A.A. Green, M.C. Hersam, Nat. Nanotechnol. 4, 64 (2009).

  33. A.A. Green, M.C. Hersam, Nano Lett. 8, 1417 (2008).

  34. A. Southard, V. Sangwan, J. Cheng, E.D. Williams, M.S. Fuhrer, Org. Electron. 10, 1556 (2009).

  35. E.M. Doherty, S. De, P.E. Lyons, A. Shmeliov, P.N. Nirmalraj, V. Scardaci, J. Joimel, W.J. Blau, J.J. Boland, J.N. Coleman, Carbon 47, 2466 (2009).

  36. S. De, T. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, J.N. Coleman, ACS Nano 3, 1767 (2009).

  37. J.Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Nano Lett. 8, 689 (2008).

  38. A.R. Madaria, A. Kumar, F.N. Ishikawa, C.W. Zhou, Nano Res. 3, 564 (2010).

  39. A.R. Madaria, A. Kumar, C.W. Zhou, Nanotechnology 22, 245201 (2011).

  40. A.R. Rathmell, S.M. Bergin, Y.L. Hua, Z.Y. Li, B.J. Wiley, Adv. Mater. 22, 3558 (2010).

  41. H. Wu, L.B. Hu, M.W. Rowell, D.S. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y.A. Yang, M.D. McGehee, Y. Cui, Nano Lett. 10, 4242 (2010).

  42. L.B. Hu, H.S. Kim, J.Y. Lee, P. Peumans, Y. Cui, ACS Nano 4, 2955 (2010).

  43. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano 2, 463 (2008).

  44. P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, K.S. Novoselov, Nano Lett. 8, 1704 (2008).

  45. S. De, J.N. Coleman, ACS Nano 4, 2713 (2010).

  46. S. De, P.J. King, M. Lotya, A. O’Neill, E.M. Doherty, Y. Hernandez, G.S. Duesberg, J.N. Coleman, Small 6, 458 (2010).

  47. G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).

  48. T.K. Hong, D.W. Lee, H.J. Choi, H.S. Shin, B.S. Kim, ACS Nano 4, 3861 (2010).

  49. H. Yamaguchi, G. Eda, C. Mattevi, H. Kim, M. Chhowalla, ACS Nano 4, 524 (2010).

  50. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mostrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Adv. Funct. Mater. 19, 2577 (2009).

  51. X. Wang, L.J. Zhi, N. Tsao, Z. Tomovic, J.L. Li, K. Mullen, Angew. Chem. Int. Ed. 47, 2990 (2008).

  52. G. Eda, Y.Y. Lin, S. Miller, C.W. Chen, W.F. Su, M. Chhowalla, Appl. Phys. Lett. 92, 233305 (2008).

  53. J.B. Wu, H.A. Becerril, Z.N. Bao, Z.F. Liu, Y.S. Chen, P. Peumans, Appl. Phys. Lett. 92, 263302 (2008).

  54. Y.W. Zhu, W.W. Cai, R.D. Piner, A. Velamakanni, R.S. Ruoff, Appl. Phys. Lett. 95, 103104 (2009).

  55. H.W. Tien, Y.L. Huang, S.Y. Yang, J.Y. Wang, C.C.M. Ma, Carbon 49, 1550 (2011).

  56. L.J. Cote, F. Kim, J.X. Huang, J. Am. Chem. Soc. 131, 1043 (2009).

  57. Y.K. Kim, D.H. Min, Langmuir 25, 11302 (2009).

  58. Y.Q. Liu, L. Gao, J. Sun, Y. Wang, J. Zhang, Nanotechnology 20, 465605 (2009).

  59. Y.Y. Liang, J. Frisch, L.J. Zhi, H. Norouzi-Arasi, X.L. Feng, J.P. Rabe, N. Koch, K. Mullen, Nanotechnology 20, 434007 (2009).

  60. X.L. Li, G.Y. Zhang, X.D. Bai, X.M. Sun, X.R. Wang, E. Wang, H.J. Dai, Nat. Nanotechnol. 3, 538 (2008).

  61. S. Biswas, L.T. Drzal, Nano Lett. 9, 167 (2009).

  62. X. Wang, L.J. Zhi, K. Mullen, Nano Lett. 8, 323 (2008).

  63. A.A. Green, M.C. Hersam, Nano Lett. 9, 4031 (2009).

  64. H.Z. Geng, D.S. Lee, K.K. Kim, G.H. Han, H.K. Park, Y.H. Lee, Chem. Phys. Lett. 455, 275 (2008).

  65. V. Scardaci, R. Coull, J.N. Coleman, Appl. Phys. Lett. 97 (2010).

  66. N. Saran, K. Parikh, D.S. Suh, E. Munoz, H. Kolla, S.K. Manohar, J. Am. Chem. Soc. 126, 4462 (2004).

  67. M. Dressel, G. Gruner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, Cambridge, UK, 2002).

  68. S. De, P.J. King, P.E. Lyons, U. Khan, J.N. Coleman, ACS Nano 4, 7064 (2010).

  69. D.S. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, UK, 1994).

  70. P.N. Nirmalraj, T. Lutz, S. Kumar, G.S. Duesberg, J.J. Boland, Nano Lett. 11, 16 (2011).

  71. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008).

  72. D.S. Hecht, A.M. Heintz, R. Lee, L.B. Hu, B. Moore, C. Cucksey, S. Risser, Nanotechnology 22, 075201 (2011).

  73. P.N. Nirmalraj, P.E. Lyons, S. De, J.N. Coleman, J.J. Boland, Nano Lett. 9, 3890 (2009).

  74. D. Hecht, L.B. Hu, G. Gruner, Appl. Phys. Lett. 89, 133112 (2006).

  75. P.E. Lyons, S. De, F. Blighe, V. Nicolosi, L.F.C. Pereira, M.S. Ferreira, J.N. Coleman, J. Appl. Phys. 104, 044302 (2008).

  76. D.H. Shin, H.C. Shim, J.W. Song, S. Kim, C.S. Hana, Scr. Mater. 60, 607 (2009).

  77. B. Ruzicka, L. Degiorgi, R. Gaal, L. Thien-Nga, R. Bacsa, J.P. Salvetat L. Forro, Phys. Rev. B 61, R2468 (2000).

  78. A. Ugawa, J. Hwang, H.H. Gommans, H. Tashiro, A.G. Rinzler, D.B. Tanner Curr. Appl. Phys. 1, 45 (2001).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Science Foundation Ireland funded collaboration (SFI grant 03/CE3/M406s1) between Trinity College Dublin and Hewlett Packard, which has allowed this work to take place.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanta De.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De, S., Coleman, J.N. The effects of percolation in nanostructured transparent conductors. MRS Bulletin 36, 774–781 (2011). https://doi.org/10.1557/mrs.2011.236

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.236

Navigation