Skip to main content

Advertisement

Log in

Converting light to electrons in oriented nanotube arrays used in sensitized solar cells

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Well-ordered arrays of one-dimensional semiconductors, such as titania nanotubes (NTs), have attracted attention as a promising new film architecture for dye- and semiconductor-sensitized solar cells. The film architecture in sensitized solar cells combines light absorption, charge injection, and charge-carrier transport to generate electrical power and is, therefore, a key component in determining the photoconversion efficiency of a cell. Because of the arrays’ distinct combination of physical, electrical, and optical properties, the conversion efficiencies of TiO2 NT-based devices are rapidly catching up with those of the traditional nanoparticle-based cells. In this article, we briefly review the fabrication and morphology of the NT arrays and discuss the strong influence that the film architecture and individual NT structure exert on the light-harvesting and charge-collection properties of sensitized solar cells. Besides affecting the solar conversion efficiency, the morphological and electrical properties of the arrays also impact the cell fabrication process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, Nature 353, 737 (1991).

    Google Scholar 

  2. I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 128, 2385 (2006).

    Google Scholar 

  3. C. Levy-Clement, R. Tena-Zaera, M.A. Ryan, A. Katty, G. Hodes, Adv. Mater. 17, 1512 (2005).

    Google Scholar 

  4. I. Kaiser, K. Ernst, C.H. Fischer, R. Konenkamp, C. Rost, I. Sieber, M.C. Lux-Steiner, Sol. Energy Mater. Sol. Cells 67, 89 (2001).

    Google Scholar 

  5. Q. Wang, K. Zhu, N.R. Neale, A.J. Frank, Nano Lett. 9, 806 (2009).

    Google Scholar 

  6. W.B. Wu, Z.G. Jin, G.D. Hu, S.J. Bu., Electrochim. Acta 52, 4804 (2007).

    Google Scholar 

  7. M. Grätzel, J. Photochem. Photobiol. A-Chem. 164, 3 (2004).

    Google Scholar 

  8. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L.Y. Han, Jpn. J. Appl. Phys. Part 2—Lett. Express Lett. 45, L638 (2006).

  9. J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 105, 11194 (2001).

    Google Scholar 

  10. K. Zhu, N. Kopidakis, N.R. Neale, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 110, 25174 (2006).

    Google Scholar 

  11. A.J. Frank, N. Kopidakis, J. van de Lagemaat, Coord. Chem. Rev. 248, 1165 (2004).

    Google Scholar 

  12. J.M. Macak, H. Tsuchiya, A. Ghicov, P. Schmuki, Electrochem. Commun. 7, 1133 (2005).

    Google Scholar 

  13. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 6, 215 (2006).

    Google Scholar 

  14. K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Nano Lett. 7, 69 (2007).

    Google Scholar 

  15. J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker, J. Am. Chem. Soc. 130, 13364 (2008).

    Google Scholar 

  16. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M. Zakeeruddin, M. Grätzel, Acs Nano 2, 1113 (2008).

    Google Scholar 

  17. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nat. Mater. 4, 455 (2005).

    Google Scholar 

  18. J.B. Baxter, E.S. Aydil, Appl. Phys. Lett. 86, 053114 (2005).

    Google Scholar 

  19. E. Galoppini, J. Rochford, H.H. Chen, G. Saraf, Y.C. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. B 110, 16159 (2006).

    Google Scholar 

  20. A.B.F. Martinson, J.E. McGarrah, M.O.K. Parpia, J.T. Hupp, Phys. Chem. Chem. Phys. 8, 4655 (2006).

    Google Scholar 

  21. X.J. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781 (2008).

    Google Scholar 

  22. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011 (2006).

    Google Scholar 

  23. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, Curr. Opin. Solid State Mat. Sci. 11, 3 (2007).

    Google Scholar 

  24. K. Zhu, T.B. Vinzant, N.R. Neale, A.J. Frank, Nano Lett. 7, 3739 (2007).

    Google Scholar 

  25. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Appl. Phys. Lett. 91, 3 (2007).

    Google Scholar 

  26. D. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res. 16, 3331 (2001).

    Google Scholar 

  27. R. Beranek, H. Hildebrand, P. Schmuki, Electrochem. Solid State Lett. 6, B12 (2003).

  28. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160 (1998).

    Google Scholar 

  29. Q. Chen, W.Z. Zhou, G.H. Du, L.M. Peng, Adv. Mater. 14, 1208 (2002).

    Google Scholar 

  30. P. Hoyer, Langmuir 12, 1411 (1996).

    Google Scholar 

  31. M.S. Sander, M.J. Cote, W. Gu, B.M. Kile, C.P. Tripp, Adv. Mater. 16, 2052 (2004).

    Google Scholar 

  32. Q.Y. Cai, M. Paulose, O.K. Varghese, C.A. Grimes, J. Mater. Res. 20, 230 (2005).

    Google Scholar 

  33. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett. 5, 191 (2005).

    Google Scholar 

  34. M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.A. Grimes, J. Phys. Chem. B 110, 16179 (2006).

    Google Scholar 

  35. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Aucouturier, Surf. Interface Anal. 27, 629 (1999).

    Google Scholar 

  36. H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, J. Phys. Chem. C 111, 7235 (2007).

    Google Scholar 

  37. A. Ghicov, P. Schmuki, Chem. Commun. 2791 (2009).

  38. K. Shankar, G.K. Mor, A. Fitzgerald, C.A. Grimes, J. Phys. Chem. C 111, 21 (2007).

    Google Scholar 

  39. K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, C.A. Grimes, Nanotechnology 18,11 (2007).

  40. M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor T.A. Desai, C.A. Grimes, J. Phys. Chem. C 111, 14992 (2007).

    Google Scholar 

  41. S. Berger, H. Tsuchiya, P. Schmuki, Chem. Mat. 20, 3245 (2008).

    Google Scholar 

  42. E. Bright, D.W. Readey, J. Am. Ceram. Soc. 70, 900 (1987).

    Google Scholar 

  43. J.Y. Kim, J.H. Noh, K. Zhu, A.F. Halverson, N.R. Neale, S. Park, K.S. Hong, A.J. Frank, ACS Nano. 5, 2647 (2011).

    Google Scholar 

  44. J.M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem.-Int. Edit. 44, 2100 (2005).

    Google Scholar 

  45. Z.X. Su, W.Z. Zhou, J. Mater. Chem. 19, 2301 (2009).

    Google Scholar 

  46. Y.V. Bhargava, Q.A.S. Nguyen, T.M. Devine, J. Electrochem. Soc. 156, E62 (2009).

  47. S. Bauer, S. Kleber, P. Schmuki, Electrochem. Commun. 8, 1321 (2006).

    Google Scholar 

  48. Y.K. Lai, L. Sun, Y.C. Chen, H.F. Zhuang, C.J. Lin, J.W. Chin, J. Electrochem. Soc. 153, D123 (2006).

  49. Z.B. Xie, S. Adams, D.J. Blackwood, J. Wang, Nanotechnology 19, 6 (2008).

    Google Scholar 

  50. C.C. Chen, H.W. Chung, C.H. Chen, H.P. Lu, C.M. Lan, S.F. Chen, L. Luo, C.S. Hung, E.W.G. Diau, J. Phys. Chem. C 112, 19151 (2008).

    Google Scholar 

  51. A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki, Electrochem. Commun. 7, 505 (2005).

    Google Scholar 

  52. K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X.J. Feng M. Paulose, J.A. Seabold, K.S. Choi, C.A. Grimes, J. Phys. Chem. C 113, 6327 (2009).

    Google Scholar 

  53. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115, 6382 (1993).

    Google Scholar 

  54. C.J. Lin, W. Yu, S.H. Chien, J. Mater. Chem. 20, 1073 (2010).

    Google Scholar 

  55. J. Wang, Z.Q. Lin., Chem. Mat. 22, 579 (2010).

    Google Scholar 

  56. Q.J. Yu, Y.H. Wang, Z.H. Yi, N.N. Zu, J. Zhang, M. Zhang, P. Wang, ACS Nano 4, 6032 (2010).

    Google Scholar 

  57. F. Cao, G. Oskam, G.J. Meyer, P.C. Searson, J. Phys. Chem. 100, 17021 (1996).

    Google Scholar 

  58. P.E. de Jongh, D. Vanmaekelbergh, Phys. Rev. Lett. 77, 3427 (1996).

    Google Scholar 

  59. J. Nelson, S.A. Haque, D.R. Klug, J.R. Durrant, Phys. Rev. B 63, 205321 (2001).

    Google Scholar 

  60. G. Schlichthörl, N.G. Park A.J. Frank, J. Phys. Chem. B 103, 782 (1999).

    Google Scholar 

  61. L. Dloczik, O. Ileperuma, I. Lauermann, L.M. Peter, E.A. Ponomarev, G. Redmond, N.J. Shaw, I. Uhlendorf, J. Phys. Chem. B 101, 10281 (1997).

    Google Scholar 

  62. A. Solbrand, H. Lindstrom, H. Rensmo, A. Hagfeldt, S.E. Lindquist, S. Sodergren, J. Phys. Chem. B 101, 2514 (1997).

    Google Scholar 

  63. J. Bisquert, V.S. Vikhrenko, J. Phys. Chem. B 108, 2313 (2004).

    Google Scholar 

  64. C. Richter, C.A. Schmuttenmaer, Nat. Nanotechnol. 5, 769 (2010).

    Google Scholar 

  65. F. Fabregat-Santiago, E.M. Barea, J. Bisquert, G.K. Mor, K. Shankar, C.A. Grimes, J. Am. Chem. Soc. 130, 11312 (2008).

    Google Scholar 

  66. K. Nakayama, T. Kubo, Y. Nishikitani, Jpn. J. Appl. Phys. 47, 6610 (2008).

    Google Scholar 

  67. V. Likodimos, T. Stergiopoulos, P. Falaras, J. Kunze, P. Schmuki, J. Phys. Chem. C 112, 12687 (2008).

    Google Scholar 

  68. Y. Shin, S. Lee, Nano Lett. 8, 3171 (2008).

    Google Scholar 

  69. D. Kim, A. Ghicov, P. Schmuki, Electrochem. Commun. 10, 1835 (2008).

    Google Scholar 

  70. S.P. Albu, P. Schmuki, Phys. Status Solidi-Rapid Res. Lett. 4, 151 (2010).

    Google Scholar 

  71. C.M. Ruan, M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, J. Phys. Chem. B 109, 15754 (2005).

    Google Scholar 

  72. J.M. Macak, S.P. Albu, P. Schmuki, Phys. Status Solidi-Rapid Res. Lett. 1, 181 (2007).

    Google Scholar 

  73. A. Ghicov, S.P. Alba, J.M. Macak, P. Schmuki, Small 4, 1063 (2008).

    Google Scholar 

  74. O.K. Varghese, D.W. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, J. Mater. Res. 18, 156 (2003).

    Google Scholar 

  75. A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki, Phys. Status Solidi A-Appl. Mat. 203, R28 (2006).

  76. J. Wang, L. Zhao, V.S.Y. Lin, Z.Q. Lin, J. Mater. Chem. 19, 3682 (2009).

    Google Scholar 

  77. Y. Alivov, M. Pandikunta, S. Nikishin, Z.Y. Fan., Nanotechnology 20, 6 (2009).

    Google Scholar 

  78. K. Zhu, N.R. Neale, A.F. Halverson, J.Y. Kim, A.J. Frank, J. Phys. Chem. C 114, 13433 (2010).

    Google Scholar 

  79. A.B.F. Martinson, J.W. Elam, J. Liu, M.J. Pellin, T.J. Marks, J.T. Hupp, Nano Lett. 8, 2862 (2008).

    Google Scholar 

  80. N.K. Allam, C.A. Grimes, J. Phys. Chem. C 113, 7996 (2009).

    Google Scholar 

  81. N.K. Allam, K. Shankar, C.A. Grimes, Adv. Mater. 20, 3942 (2008).

    Google Scholar 

  82. W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, L.M. Peng, J. Am. Chem. Soc. 130, 1124 (2008).

    Google Scholar 

  83. S. Banerjee, S.K. Mohapatra, P.P. Das, M. Misra, Chem. Mat. 20, 6784 (2008).

    Google Scholar 

  84. D.R. Baker, P.V. Kamat, Adv. Funct. Mater. 19, 805 (2009).

    Google Scholar 

  85. K. Shin, S. Il Seok, S.H. Im, J.H. Park., Chem. Commun. 46, 2385 (2010).

    Google Scholar 

  86. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 130, 4007 (2008).

    Google Scholar 

  87. Q. Shen, A. Yamada, S. Tamura, T. Toyoda, Appl. Phys. Lett. 97, 3 (2010).

    Google Scholar 

  88. S.G. Chen, M. Paulose, C. Ruan, G.K. Mor, O.K. Varghese, D. Kouzoudis, C.A. Grimes, J. Photochem. Photobiol. A-Chem. 177, 177 (2006).

    Google Scholar 

  89. X.F. Gao, H.B. Li, W.T. Sun, Q. Chen, F.Q. Tang, L.M. Peng. J. Phys. Chem. C 113 7531 (2009).

  90. J.A. Seabold, K. Shankar, R.H.T. Wilke, M. Paulose, O.K. Varghese, C.A. Grimes, K.S. Choi, Chem. Mat. 20, 5266 (2008).

    Google Scholar 

  91. S.J. Moon, Y. Itzhaik, J.H. Yum, S.M. Zakeeruddin, G. Hodes, M. Grätzel, J. Phys. Chem. Lett. 1, 1524 (2010).

    Google Scholar 

  92. S.K. Sarkar, J.Y. Kim, D.N. Goldstein, N.R. Neale, K. Zhu, C.M. Elliot, A.J. Frank, S.M. George, J. Phys. Chem. C 114, 8032 (2010).

    Google Scholar 

  93. M. Nanu, J. Schoonman, A. Goossens, Adv. Mater. 16, 453 (2004).

    Google Scholar 

  94. M. Nanu, J. Schoonman, A. Goossens, Nano Lett. 5, 1716 (2005).

    Google Scholar 

  95. J.M. Macak, B.G. Gong, M. Hueppe, P. Schmuki, Adv. Mater. 19, 3027 (2007).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (A.J.F.), and the Division of Photovoltaics, Office of Utility Technologies (K.Z.), U.S. Department of Energy, under contract No. DEAC36-08G028308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, K., Frank, A.J. Converting light to electrons in oriented nanotube arrays used in sensitized solar cells. MRS Bulletin 36, 446–452 (2011). https://doi.org/10.1557/mrs.2011.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.112

Navigation