Skip to main content

Advertisement

Log in

High-performance antireflection coatings utilizing nanoporous layers

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

To harness the full spectrum of solar energy, optical reflections at the surface of a solar photovoltaic cell must be reduced as much as possible over the relevant solar spectral range and over a wide range of incident angles. The development of antireflection coatings embodying omni-directionality over a wide range of wavelengths is challenging. Recently, nanoporous films, fabricated by oblique-angle deposition and having tailored- and very low-refractive index properties, have been demonstrated. Tailorability of the refractive index and the ability to realize films with a very low-refractive index are properties critical in the performance of broadband, omnidirectional antireflection coatings. As such, nanoporous materials are ideally suited for developing near-perfect antireflection coatings. Here, we discuss multilayer antireflection coatings with near-perfect transmittance over the spectral range of 400−2000 nm and over widely varying angles of acceptance, 0−90°. The calculated solar optical-to-electrical efficiency enhancement that can be attained with nanoporous multilayer coatings over single-layer quarter-wave films is 18%, making these coatings highly attractive for solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. J.-Q. Xi, J.K. Kim, E.F. Schubert, D. Ye, J.S. Juneja, T.-M. Lu, S.-Y. Lin, Opt. Lett. 31, 601 (2006).

    Google Scholar 

  2. J.-Q. Xi, J.K. Kim, E.F. Schubert, Nano Lett. 5, 1385 (2005).

    Google Scholar 

  3. J.-Q. Xi, M.F. Schubert, J.K. Kim, E.F. Schubert, M. Chen, S.-Y. Lin, W. Liu, J.A. Smart, Nat. Photonics 1, 176 (2007).

    Google Scholar 

  4. K. Robbie, L.J. Friedrich, S.K. Dew, T. Smy, M.J. Brett, J. Vac. Sci. Technol. A, 13, 1032 (1995).

    Google Scholar 

  5. Y. Ma, F. Liu, M. Zhu, P. Yin, Thin Solid Films, 3492 (2009).

  6. H. Chen, H. Lin, C. Wu, W. Chen, J. Chen, S. Gwo, Optics Express, 16, 8106 (2008).

    Google Scholar 

  7. J.T. Kwon, H.G. Shin, Y.H. Seo, B.H. Kim, H.G. Lee, J.S. Lee, Current Applied Physics, 9, 81 (2009).

    Google Scholar 

  8. H. Wang, K. Lai, Y. Lin, C. Lin, J. He, Langmuir, 26, 12855 (2010).

    Google Scholar 

  9. M.M. Hawkeye, M.J. Brett, Phys. Status Solidi A, 206 (5), 940 (2009).

    Google Scholar 

  10. J.M. Garcia-Martin, R. Alvarez, P. Romero-Gomez, A. Cebollada, A. Palmero, Appl. Phys. Lett. 97, 173103 (2010).

    Google Scholar 

  11. Y. He, Y. Zhao, Crystal Growth and Design, 10, 440 (2010).

    Google Scholar 

  12. A. Lakhtakia, R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, 2005).

    Google Scholar 

  13. A. Kundt, Ann. Phys. Chem. 27, 59 (1886).

    Google Scholar 

  14. K. Robbie, M.J. Brett, A. Lakhtakia, Nature 384, 616 (1996).

    Google Scholar 

  15. M.M. Hawkeye, M.J. Brett, J. Vac. Sci. Technol., A 25, 1317 (2007).

    Google Scholar 

  16. Y.P. Zhao, D.X. Ye, G.C. Wang, T.M. Lu, Nano Lett. 2, 351 (2002).

    Google Scholar 

  17. K. Robbie, M.J. Brett, J. Vac. Sci. Technol., A 15, 1460 (2009).

    Google Scholar 

  18. S.V. Kesapragada, D. Gall, Thin Solid Films 494, 234 (2006).

    Google Scholar 

  19. D.X. Ye, Y.-P. Zhao, G.-R. Yang, Y.-G. Zhao, G.-C. Wang, T.-M. Lu, Nanotechnology 13, 615 (2002).

    Google Scholar 

  20. M.O. Jensen, M.J. Brett, Appl. Phys. A 80, 763 (2005).

    Google Scholar 

  21. J.M. Nieuwenhuizen, H.B. Haanstra, Philips Tech. Rev. 27, 87 (1966).

    Google Scholar 

  22. R.N. Tait, T. Smy, M.J. Brett, Thin Solid Films 226, 196 (1993).

    Google Scholar 

  23. P. Meakin, Phys. Rev. A 38, 994 (1988).

    Google Scholar 

  24. S. Lichter, J. Chen, Phys. Rev. Lett. 56, 1396 (1986).

    Google Scholar 

  25. D.J. Poxson, F.W. Mont, M.F. Schubert, J.K. Kim, E.F. Schubert, Appl. Phys. Lett. 93, 101914 (2008).

    Google Scholar 

  26. K.M. Krause, M.T. Taschuk, K.D. Harris, D.A. Rider, N.G. Wakefield, J.C. Sit, J.M. Buriak, M. Thommes, M.J. Brett, Langmuir 26, 4368 (2009).

    Google Scholar 

  27. W.H. Southwell, Opt. Lett. 8, 584 (1983).

    Google Scholar 

  28. M.L. Kuo, D.J. Poxson, Y.S. Kim, F.W. Mont, J.K. Kim, E.F. Schubert, S. Lin, Opt. Lett. 33, 2527 (2008).

    Google Scholar 

  29. M.F. Schubert, D.J. Poxson, F.W. Mont, J.K. Kim, E.F. Schubert, Appl. Phys. Express 3, 2502 (2010).

    Google Scholar 

  30. D.J. Poxson, M.F. Schubert, F.W. Mont, E.F. Schubert, J.K. Kim, Opt. Lett. 34, 728 (2009).

    Google Scholar 

  31. S. Chhajed, M.F. Schubert, J.K. Kim, E.F. Schubert, Appl. Phys. Lett. 93, 251108 (2008).

    Google Scholar 

  32. M.F. Schubert, F.W. Mont, S. Chhajed, D.J. Poxson, J.K. Kim, E.F. Schubert, Opt. Express 16, 5290 (2008).

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under grant number DMR-0642573, U.S. DOE support under grant number DE-FG02-06ER46347, and by NYSTAR under contact number C070119. The authors also gratefully acknowledge support by Samsung LED, Sandia National Laboratories, Magnolia Solar Inc., Crystal IS, Troy Research Corporation, and New York State.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Poxson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poxson, D.J., Kuo, ML., Mont, F.W. et al. High-performance antireflection coatings utilizing nanoporous layers. MRS Bulletin 36, 434–438 (2011). https://doi.org/10.1557/mrs.2011.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.110

Navigation