Skip to main content

Advertisement

Log in

Bending light to our will

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article is based on the Fred Kavli Distinguished Lectureship in Nanoscience presentation given by Harry Atwater (California Institute of Technology) on April 5, 2010 at the Materials Research Society Spring Meeting in San Francisco, CA. The Kavli Foundation supports scientific research, honors scientific achievement, and promotes public understanding of scientists and their work. Its particular focuses are astrophysics, nanoscience, and neuroscience.

Solar energy is currently enjoying substantial growth and investment, owing to worldwide sensitivity to energy security and climate change. Solar energy is an inexhaustible resource and is in abundant supply on all continents of the world. The power density of sunlight (~1000 W/m2) and the efficiency of photovoltaic devices (~10–25%) are high enough so that land use does not limit photovoltaic deployment at the terawatt scale. However solar photovoltaics are currently too expensive to achieve parity with other forms of electricity generation based on fossil fuels. This is largely due to the cost (and for some cases, the abundance) of materials used in photovoltaic modules and systems, and the cost of deploying in current form. This economic and social context has created the present situation where there is widespread interest in photovoltaic technology for power generation, but the cumulative installed world capacity for photovoltaics is <50 GW, and it appears to be very challenging for photovoltaics to play a very substantial role in large-scale (terawatt) electricity generation in the short term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. E. Yablonovitch, Sci. Am. 285, 47 (2001).

    Article  CAS  Google Scholar 

  2. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Edition (Princeton, New Jersey, 2008).

    Book  Google Scholar 

  3. H.A. Atwater, Sci. Am. 296, 56 (2007).

    Article  CAS  Google Scholar 

  4. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004).

    Article  CAS  Google Scholar 

  5. H.A. Atwater, A. Polman, Nat. Mater. 9 (3), 205 (2010).

    Article  CAS  Google Scholar 

  6. E. Yablonovitch, G.D. Cody, IEEE Trans. Electron. Devices 29, 300 (1982).

    Article  Google Scholar 

  7. D. Derkacs, S.H. Lim, P. Matheu, W. Mar, E.T. Yu, Appl. Phys. Lett. 89, 093103 (2006).

    Article  Google Scholar 

  8. V.E. Ferry, M.A. Verschuuren, H.B.T. Li, R.E.I. Schropp, H.A. Atwater, A. Polman, Appl. Phys. Lett. 95, 183503 (2009).

    Article  Google Scholar 

  9. V.E. Ferry, M.A. Verschuuren, H.B.T. Li, E. Verhagen, R.J. Walters, R.E.I. Schropp, H.A. Atwater, A. Polman, Opt. Express 18, A237 (2010).

    Article  CAS  Google Scholar 

  10. R. Biswas, D. Zhou, B. Curtin, N. Chakravarty, V. Dalal, Proc. IEEE 34th IEEE Photovoltaic Specialists Conference, Philadelphia, PA, 7–12 June 2009, pp. 206–209.

  11. P.N. Saeta, V.E. Ferry, D. Pacifici, J.N. Munday, H.A. Atwater, Opt. Express 17, 20975 (2009).

    Article  CAS  Google Scholar 

  12. B.M. Kayes, H.A. Atwater, N.S. Lewis, J. Appl. Phys. 97, 114302 (2005).

    Article  Google Scholar 

  13. E.C. Garnett, P. Yang, J. Am. Chem. Soc. 130, 9224 (2008).

    Article  CAS  Google Scholar 

  14. M.D. Kelzenberg, M.C. Putnam, D.B. Turner-Evans, N.S. Lewis, H.A. Atwater, Proc. 34th IEEE Photovoltaic Specialists Conference (IEEE, 2009).

  15. L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, Appl. Phys. Lett. 91, 233117 (2007).

    Article  Google Scholar 

  16. T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, S. Christiansen, Nanotechnology 19, 295203 (2008).

    Article  Google Scholar 

  17. O. Gunawan, S. Guha, Sol. Energy Mater. Sol. Cells 93, 1388 (2009).

    Article  CAS  Google Scholar 

  18. K. Peng, Y. Xu, Y. Wu, Y. Yan, S.-T. Lee, J. Zhu, Small 1, 1062 (2005).

    Article  CAS  Google Scholar 

  19. M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, Nat. Mater. 9, 239 (2010).

    Article  CAS  Google Scholar 

  20. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  CAS  Google Scholar 

  21. M.C. Putnam, S.W. Boettcher, M.D. Kelzenberg, D.B. Turner-Evans, J.M. Spurgeon, E.L. Warren, R.M. Briggs, N.S. Lewis, H.A. Atwater, Energy Environ. Sci. 3, 1037 (2010).

    Article  Google Scholar 

  22. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).

    Article  CAS  Google Scholar 

  23. S.P. Burgos, R. deWaele, A. Polman, H.A. Atwater, Nat. Mater. 9, 407 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Atwater.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atwater, H. Bending light to our will. MRS Bulletin 36, 57–62 (2011). https://doi.org/10.1557/mrs.2010.7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2010.7

Navigation