Skip to main content

Advertisement

Log in

Z-scheme photocatalyst systems for water splitting under visible light irradiation

  • Recent Developments in Solar Water-Splitting Photocatalysis
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Water splitting to produce H2 using sunlight is a form of artificial photosynthesis in that light energy is converted to chemical energy. As such, water splitting using powdered photocatalysts has attracted attention in the framework of energy and environmental issues. This article reviews z-scheme photocatalyst systems for water splitting under visible light irradiation, especially focused on the systems consisting of SrTiO3:Rh of a H2-evolving photocatalyst, and O2-evolving photocatalysts with and without electron mediators. These photocatalyst systems showed activities for water splitting into H2 and O2 in a stoichiometric amount under visible light irradiation and even under sunlight irradiation. The photocatalytic activity was sensitive to pH. The optimum pH was 2.4 when iron ions were used as electron mediators. Co-catalysts also affected the activity. The photodeposited Ru co-catalyst gave an excellent performance. The best performance achieved by the pH adjustment and the selection of a co-catalyst was obtained mainly by suppression of back reactions to form H2O from evolved H2 and O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  2. O. Khaselev, J.A. Turner, Science 280, 425 (1998).

    Article  CAS  Google Scholar 

  3. M. Grätzel, Nature 414, 338 (2001).

    Article  Google Scholar 

  4. S. Licht, J. Phys. Chem. B 105, 6281 (2001).

    Article  CAS  Google Scholar 

  5. A. Kudo, Int. J. Hydrogen Energy 32, 2673 (2007).

    Article  CAS  Google Scholar 

  6. K. Domen, M. Hara, J.N. Kondo, T. Takata, Bull. Chem. Soc. Jpn. 73, 1307 (2000).

    Article  CAS  Google Scholar 

  7. H. Arakawa, K. Sayama, Catal. Surveys Jpn. 4, 75 (2000).

    Article  CAS  Google Scholar 

  8. K. Maeda, K. Domen, J. Phys. Chem. C 111, 7851 (2007).

    Article  CAS  Google Scholar 

  9. F.E. Osterloh, Chem. Mater. 20, 35 (2008).

    Article  CAS  Google Scholar 

  10. A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253 (2009).

    Article  CAS  Google Scholar 

  11. Y. Inoue, Energy Environ. Sci. 2, 364 (2009).

    Article  CAS  Google Scholar 

  12. K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 440, 295 (2006).

    Article  CAS  Google Scholar 

  13. Y. Lee, H. Terashita, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, J. Phys. Chem. C 111, 1042 (2007).

    Article  CAS  Google Scholar 

  14. J.R. Darwent, A. Mills, J. Chem. Soc., Faraday Trans. 2 78, 359 (1982).

    Article  CAS  Google Scholar 

  15. A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 121, 11459 (1999).

    Article  CAS  Google Scholar 

  16. H. Kato, A. Kudo, J. Phys. Chem. B106, 5029 (2002).

    Article  CAS  Google Scholar 

  17. H. Kato, H. Kobayashi, A. Kudo, J. Phys. Chem. B 106, 12441 (2002).

    Article  CAS  Google Scholar 

  18. T. Ishii, H. Kato, A. Kudo, J. Photochem. Photobiol. A 163, 181 (2004)

    Article  CAS  Google Scholar 

  19. R. Konta,T. Ishii, H. Kato, A. Kudo, J. Phys. Chem. B 108, 8992 (2004).

    Article  CAS  Google Scholar 

  20. Y. Hosogi, K. Tanabe, H. Kato, H. Kobayashi, A. Kudo, Chem. Lett. 33, 28 (2004).

    Article  CAS  Google Scholar 

  21. Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Bull. Chem. Soc. Jpn. 80, 885 (2007).

    Article  CAS  Google Scholar 

  22. R. Niishiro, R. Konta, H. Kato, W.J. Chun, K. Asakura, A. Kudo, J. Phys. Chem. C 111, 17420 (2007).

    Article  CAS  Google Scholar 

  23. A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, J. Am. Chem. Soc. 124, 13547 (2002).

    Article  CAS  Google Scholar 

  24. D. Yamashita, T. Takata, M. Hara, J.N. Kondo, K. Domen, Solid State Ionics. 172, 591 (2004).

    Article  Google Scholar 

  25. K. Sayama, K. Mukasa, R. Abe, Y Abe, H. Arakawa, Chem. Commun. 2416 (2001).

  26. H. Kato, M. Hori, R. Konta, Y Shimodaira, A. Kudo, Chem. Lett. 33, 1348 (2004).

    Article  CAS  Google Scholar 

  27. R. Abe, T. Takata, H. Sugihara, K. Domen, Chem. Commun. 3829 (2005).

  28. H. Kato, Y Sasaki, A. Iwase, A. Kudo, Bull. Chem. Soc. Jpn. 12, 2457 (2007).

    Article  Google Scholar 

  29. M. Higashi, R. Abe, A. Ishikawa, T. Takata, B. Ohtani, K. Domen, Chem. Lett. 37, 138 (2008).

    Article  CAS  Google Scholar 

  30. M. Higashi, R. Abe, K. Teramura, T. Takata, B. Ohtani, K. Domen, Chem. Phys. Lett. 452,120 (2008).

    Article  CAS  Google Scholar 

  31. Y. Sasaki, A. Iwase, H. Kato, A. Kudo, J. Catal. 259,133 (2008).

    Article  CAS  Google Scholar 

  32. R. Abe, K. Shinmei, K. Hara, B. Ohtani, Chem. Commun. 3577 (2009).

  33. K. Maeda, M. Higashi, D. Lu, R. Abe, K. Domen, J. Am. Chem. Soc. 132, 5858 (2010).

    Article  CAS  Google Scholar 

  34. S. Ogura, M. Kohno, K. Saito, Y. Inoue, Phys. Chem. Chem. Phys. 1, 179 (1999).

    Article  CAS  Google Scholar 

  35. Y. Lee, H. Terashima, Y. Shimodaira, K. Teramura, M. Hara, H. Kobayashi, K. Domen, M. Yashima, J. Phys. Chem. C111, 1042 (2007).

    Article  CAS  Google Scholar 

  36. T. Sakata, K. Hashimoto, T. Kawai, J. Phys. Chem. 88, 5214 (1984).

    Article  CAS  Google Scholar 

  37. Y. Sasaki, H. Nemoto, K. Saito, A. Kudo, J. Phys. Chem. C 113, 17536 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kudo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudo, A. Z-scheme photocatalyst systems for water splitting under visible light irradiation. MRS Bulletin 36, 32–38 (2011). https://doi.org/10.1557/mrs.2010.3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2010.3

Navigation