Skip to main content

Advertisement

Log in

Energy in buildings—Policy, materials and solutions

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

This manuscript provides a bird’s eye view on energy in buildings. We discuss how energy policy leads to building standards that affect innovation in the building sector. We review current and future materials and solutions for the building envelope (insulation and glazing), renewable energy generation and energy storage, and demonstrate how the integration of buildings into district networks mitigates problems arising from a building’s, and its users’, dynamic behavior.

Buildings account for ~40% of global energy demands, and the increased adoption of innovative solutions for buildings represents an enormous potential to reduce energy demands and greenhouse gas emissions. Here, we critically review the current and future materials and solutions for the construction sector. We describe how policy affects innovative businesses and the adoption of new products and solutions. We investigate how the building envelope and user behavior determine building energy demands. Compared to conventional solutions, superinsulation materials (vacuum insulation panels, silica aerogel) can achieve the same thermal performance with drastically thinner insulation. With low-emissivity coatings and appropriate filler gasses, double and triple glazing reduces thermal losses by an order of magnitude. Vacuum and aerogel glazing reduce these even further. Switchable glazing solutions maximize solar gains during wintertime and minimize illumination demands whilst avoiding overheating in summer. Upon integration of renewable energy systems, buildings become both producers and consumers of energy. Combined with the dynamic user behavior, temporal variations in energy production require thermal and electrical storage and the integration of buildings into smart grids and energy district networks. The combination of these measures can reduce the energy consumption of the building’s stock by a factor of three.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Table 2
Table 3
Table 4
Table 5
Figure 1
Figure 2
Table 6

Similar content being viewed by others

References

  1. Parmesan C. and Yohe G.: A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918), 37–42 (2003).

    CAS  Google Scholar 

  2. Christianson G.E.: Greenhouse; the 200-Year Story of Global Warming (Walker & Company, New York, NY, 1999).

    Google Scholar 

  3. Easterling D.R., Meehl G.A., Parmesan C., Changnon S.A., Karl T.R., and Mearns L.O.: Climate extremes: Observations, modeling, and impacts. Science 289(5487), 2068–2074 (2000).

    CAS  Google Scholar 

  4. Menzel A., Sparks T.H., Estrella N., Koch E., Aasa A., Ahas R., Alm-Kübler K., Bissolli P., Braslavská O., and Briede A.: European phenological response to climate change matches the warming pattern. Global Change Biol. 12(10), 1969–1976 (2006).

    Google Scholar 

  5. McCright A.M. and Dunlap R.E.: Defeating Kyoto: The conservative movement’s impact on US climate change policy. Soc. Probl. 50(3), 348–373 (2003).

    Google Scholar 

  6. Coumou D. and Rahmstorf S.: A decade of weather extremes. Nat. Clim. Change 2(7), 491–496 (2012).

    Google Scholar 

  7. Leiserowitz A.A.: American risk perceptions: Is climate change dangerous? Risk Anal. 25(6), 1433–1442 (2005).

    Google Scholar 

  8. Lorenzoni I. and Pidgeon N.F.: Public views on climate change: European and USA perspectives. Clim. Change 77(1-2), 73–95 (2006).

    Google Scholar 

  9. Haines A., Smith K.R., Anderson D., Epstein P.R., McMichael A.J., Roberts I., Wilkinson P., Woodcock J., and Woods J.: Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change. Lancet 370(9594), 1264–1281 (2007).

    Google Scholar 

  10. Biesbroek G.R., Swart R.J., Carter T.R., Cowan C., Henrichs T., Mela H., Morecroft M.D., and Rey D.: Europe adapts to climate change: Comparing national adaptation strategies. Global Environ. Change 20(3), 440–450 (2010).

    Google Scholar 

  11. Tompkins E.L., Adger W.N., Boyd E., Nicholson-Cole S., Weatherhead K., and Arnell N.: Observed adaptation to climate change: UK evidence of transition to a well-adapting society. Global Environ. Change 20(4), 627–635 (2010).

    Google Scholar 

  12. Meinshausen M., Meinshausen N., Hare W., Raper S.C., Frieler K., Knutti R., Frame D.J., and Allen M.R.: Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458(7242), 1158–1162 (2009).

    CAS  Google Scholar 

  13. Enerdata Statistical Yearbook (2016). Available at: https://yearbook.enerdata.net/ (accessed June 21, 2017).

  14. He Y., Xu Y., Pang Y., Tian H., and Wu R.: A regulatory policy to promote renewable energy consumption in China: Review and future evolutionary path. Renew. Energy 89, 695–705 (2016).

    Google Scholar 

  15. Jacobsson S. and Lauber V.: The politics and policy of energy system transformation—Explaining the German diffusion of renewable energy technology. Energy Policy 34(3), 256–276 (2006).

    Google Scholar 

  16. Chowdhury S., Sumita U., Islam A., and Bedja I.: Importance of policy for energy system transformation: Diffusion of PV technology in Japan and Germany. Energy Policy 68, 285–293 (2014).

    Google Scholar 

  17. Lauber V. and Jacobsson S.: The politics and economics of constructing, contesting and restricting socio-political space for renewables-The German Renewable Energy Act. Environ. Innov. Soc. Transit. 18, 147–163 (2016).

    Google Scholar 

  18. Ürge-Vorsatz D., Cabeza L.F., Serrano S., Barreneche C., and Petrichenko K.: Heating and cooling energy trends and drivers in buildings. Renewable Sustainable Energy Rev. 41, 85–98 (2015).

    Google Scholar 

  19. Roberts S.: Effects of climate change on the built environment. Energy Policy 36(12), 4552–4557 (2008).

    Google Scholar 

  20. Pongiglione M. and Calderini C.: Sustainable structural design: Comprehensive literature review. J. Struct. Eng. 142(12), 4016139 (2016).

    Google Scholar 

  21. LaFrance M.: Technology Roadmap: Energy Efficient Building Envelopes (International Energy Agency, Paris, 2013).

    Google Scholar 

  22. Mirasgedis S., Georgopoulou E., Sarafidis Y., Balaras C., Gaglia A., and Lalas D.: CO2 emission reduction policies in the Greek residential sector: A methodological framework for their economic evaluation. Energy Convers. Manage. 45(4), 537–557 (2004).

    Google Scholar 

  23. Martinsen D., Markewitz P., and Vögele P.M.S.: Roads to Carbon Reduction in Germany (International Workshop by Energy Modelling Forum, IEA and IIASA, Laxenburg, Austria, 2003).

    Google Scholar 

  24. Lechtenböhmer S., Grimm V., Mitze D., Thomas S., and Wissner M.: Target 2020: Policies and Measures to Reduce Greenhouse Gas Emissions in the EU (Wuppertal Institut für Klima, Umwelt, Energie, Wuppertal, Germany, 2005).

    Google Scholar 

  25. Enviros Consulting Ltd.: Review and Development of Carbon Abatement Curves for Available Technologies as Part of the Energy Efficiency Innovation Review (Enviros, Prague, 2005).

    Google Scholar 

  26. Jaccard M.K.: Construction and Analysis of Sectoral, Regional and National Cost Curves of GHG Abatement of Canada (Natural Resources Canada, Vancouver, 2002).

    Google Scholar 

  27. Koomey J.G., Webber C.A., Atkinson C.S., and Nicholls A.: Addressing energy-related challenges for the US buildings sector: Results from the clean energy futures study. Energy Policy 29(14), 1209–1221 (2001).

    Google Scholar 

  28. National Institute for Environmental Studies Japan: GHG Emissions and Climate Change (NIES, Tsukuba, 2004).

    Google Scholar 

  29. ERI National Development and Reform Commission: China National Energy Strategy and Policy to 2020 (ERI, Beijing, 2004).

    Google Scholar 

  30. Murakami S., Levine M.D., Yoshino H., Inoue T., Ikaga T., Shimoda Y., Miura S., Sera T., Nishio M., and Sakamoto Y.: Energy consumption and mitigation technologies of the building sector in Japan. In 6th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings IAQVEC (Tohoku University Press, Sendai, Japan, 2007).

    Google Scholar 

  31. Izrael Y.A., Avdjuhsin S.I., Nazarov I.M., Kokorin A.O., Nakhutin A.I., and Yakovlev A.F.: Russian Federation Climate Change Country Study, Climate Change Action Plan (Russian Federal Service for Hydrometeorology and Environmental Monitoring, Moscow, 1999).

    Google Scholar 

  32. Australian Greenhouse Office: National appliances and equipment programs: When you keep measuring it, you know even more about it—Projected impacts 2005-2020 (2005). Available at: www.energyrating.gov.au/ (accessed June 21, 2017).

    Google Scholar 

  33. Ürge-Vorsatz D. and Novikova A.: Potentials and costs of carbon dioxide mitigation in the world’s buildings. Energy Policy 36(2), 642–661 (2008).

    Google Scholar 

  34. Ionescu C., Baracu T., Vlad G-E., Necula H., and Badea A.: The historical evolution of the energy efficient buildings. Renewable Sustainable Energy Rev. 49, 243–253 (2015).

    Google Scholar 

  35. Bozsaky D.: The historical development of thermal insulation materials. Period. Polytech. 41(2), 49–56 (2010).

    Google Scholar 

  36. A’zami A.: Badgir in traditional Iranian architecture. International Conference “Passive and Low Energy Colling for the Built Environment (Santorini, Greece, 2005).

    Google Scholar 

  37. Stetson T.D.: Improvement in window-glass (1865). Available at: http://google.com/patents/US49167 (accessed November 21, 2016).

    Google Scholar 

  38. 80 years: The House of Tomorrow: Solar house history. Available at: http://solarhousehistory.com/blog/2013/4/21/80-years (accessed November 21, 2016).

  39. SOLAR 7: History • Solar1. Available at: http://web.mit.edu/ solardecathlon/solar1.html (accessed November 21, 2016).

    Google Scholar 

  40. Kusuda T.: Early history and future prospects of building system simulation. In Proceedings of Building Simulation, Vol. 99 (1999); pp. 3–15.

    Google Scholar 

  41. Van Hoof J.: Forty years of Fanger’s model of thermal comfort: Comfort for all? Indoor Air 18(3), 182–201 (2008).

    CAS  Google Scholar 

  42. Feist W. and Schnieders J.: Energy efficiency—A key to sustainable housing. Eur. Phys. J.: Spec. Top. 176(1), 141–153 (2009).

    Google Scholar 

  43. Voss K., Goetzberger A., Bopp G., Häberle A., Heinzel A., and Lehmberg H.: The self-sufficient solar house in Freiburg—Results of 3 years of operation. Sol. Energy 58(1), 17–23 (1996).

    Google Scholar 

  44. Wohlgemuth D., von Gunten D., Manz H., Zeyer C., and Althaus H-J.: Ökologisch optimale Dämmdicken bei Wohngebäuden. Bauphysik 37(5), 277–283 (2015).

    Google Scholar 

  45. Kaynakli O.: A review of the economical and optimum thermal insulation thickness for building applications. Renewable Sustainable Energy Rev. 16(1), 415–425 (2012).

    Google Scholar 

  46. Al-Homoud M.S.: The effectiveness of thermal insulation in different types of buildings in hot climates. J. Therm. Envelope Build. Sci. 27(3), 235–247 (2004).

    Google Scholar 

  47. Sadineni S.B., Madala S., and Boehm R.F.: Passive building energy savings: A review of building envelope components. Renewable Sustainable Energy Rev. 15(8), 3617–3631 (2011).

    Google Scholar 

  48. Fennell H.C. and Haehnel J.: Setting airtightness standards. ASHRAE J. 47(9), 26–31 (2005).

    Google Scholar 

  49. Dodoo A., Gustavsson L., and Sathre R.: Primary energy implications of ventilation heat recovery in residential buildings. Energy Build. 43(7), 1566–1572 (2011).

    Google Scholar 

  50. Jelle B.P.: Traditional, state-of-the-art and future thermal building insulation materials and solutions—Properties, requirements and possibilities. Energy Build. 43(10), 2549–2563 (2011).

    Google Scholar 

  51. Stec A.A. and Hull T.R.: Assessment of the fire toxicity of building insulation materials. Energy Build. 43(2-3), 498–506 (2011).

    Google Scholar 

  52. Tyagi V.V. and Buddhi D.: PCM thermal storage in buildings: A state of art. Renewable Sustainable Energy Rev. 11(6), 1146–1166 (2007).

    Google Scholar 

  53. Zinzi M. and Agnoli S.: Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy Build. 55, 66–76 (2012).

    Google Scholar 

  54. Liu K. and Baskaran B.: Thermal performance of green roofs through field evaluation. In Proceedings for the First North American Green Roof Infrastructure Conference (Green Roofs for Healthy Cities, Ontario, Canada, 2003); pp. 1–10.

    Google Scholar 

  55. Santamouris M.: Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 103, 682–703 (2014).

    Google Scholar 

  56. Fioretti R., Palla A., Lanza L.G., and Principi P.: Green roof energy and water related performance in the Mediterranean climate. Build. Environ. 45(8), 1890–1904 (2010).

    Google Scholar 

  57. Castleton H.F., Stovin V., Beck S.B.M., and Davison J.B.: Green roofs; building energy savings and the potential for retrofit. Energy Build. 42(10), 1582–1591 (2010).

    Google Scholar 

  58. Sheweka S.M. and Mohamed N.M.: Green facades as a new sustainable approach towards climate change. Energy Procedia 18, 507–520 (2012).

    Google Scholar 

  59. Pérez G., Rincón L., Vila A., González J.M., and Cabeza L.F.: Behaviour of green facades in Mediterranean continental climate. Energy Convers. Manage. 52(4), 1861–1867 (2011).

    Google Scholar 

  60. Djongyang N., Tchinda R., and Njomo D.: Thermal comfort: A review paper. Renewable Sustainable Energy Rev. 14(9), 2626–2640 (2010).

    Google Scholar 

  61. Yang L., Yan H., and Lam J.C.: Thermal comfort and building energy consumption implications—A review. Appl. Energy 115, 164–173 (2014).

    Google Scholar 

  62. Kwong Q.J., Adam N.M., and Sahari B.B.: Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: A review. Energy Build. 68(Part A), 547–557 (2014).

    Google Scholar 

  63. Cheng Y., Niu J., and Gao N.: Thermal comfort models: A review and numerical investigation. Build. Environ. 47, 13–22 (2012).

    CAS  Google Scholar 

  64. Holopainen R., Tuomaala P., Hernandez P., Häkkinen T., Piira K., and Piippo J.: Comfort assessment in the context of sustainable buildings: Comparison of simplified and detailed human thermal sensation methods. Build. Environ. 71, 60–70 (2014).

    Google Scholar 

  65. Lim S.S., Vos T., Flaxman A.D., Danaei G., Shibuya K., Adair-Rohani H., Amann M., Anderson H.R., Andrews K.G., Aryee M., Atkinson C., Bacchus L.J., Bahalim A.N., Balakrishnan K., Balmes J., Barker-Collo S., Baxter A., Bell M.L., Blore J.D., Blyth F., Bonner C., Borges G., Bourne R., Boussinesq M., Brauer M., Brooks P., Bruce N.G., Brunekreef B., Bryan-Hancock C., Bucello C., Buchbinder R., Bull F., Burnett R.T., Byers T.E., Calabria B., Carapetis J., Carnahan E., Chafe Z., Charlson F., Chen H., Chen J.S., Cheng A.T-A., Child J.C., Cohen A., Colson K.E., Cowie B.C., Darby S., Darling S., Davis A., Degenhardt L., Dentener F., Jarlais Des, D.C., Devries K., Dherani M., Ding E.L., Dorsey E.R., Driscoll T., Edmond K., Ali S.E., Engell R.E., Erwin P.J., Fahimi S., Falder G., Farzadfar F., Ferrari A., Finucane M.M., Flaxman S., Fowkes F.G.R., Freedman G., Freeman M.K., Gakidou E., Ghosh S., Giovannucci E., Gmel G., Graham K., Grainger R., Grant B., Gunnell D., Gutierrez H.R., Hall W., Hoek H.W., Hogan A., Hosgood H.D., Hoy D., Hu H., Hubbell B.J., Hutchings S.J., Ibeanusi S.E., Jacklyn G.L., Jasrasaria R., Jonas J.B., Kan H., Kanis J.A., Kassebaum N., Kawakami N., Khang Y-H., Khatibzadeh S., Khoo J-P., Kok C., Laden F., Lalloo R., Lan Q., Lathlean T., Leasher J.L., Leigh J., Li Y., Lin J.K., Lipshultz S.E., London S., Lozano R., Lu Y., Mak J., Malekzadeh R., Mallinger L., Marcenes W., March L., Marks R., Martin R., McGale P., McGrath J., Mehta S., Mensah G.A., Merriman T.R., Micha R., Michaud C., Mishra V., Mohd Hanafiah K., Mokdad A.A., Morawska L., Mozaffarian D., Murphy T., Naghavi M., Neal B., Nelson P.K., Nolla J.M., Norman R., Olives C., Omer S.B., Orchard J., Osborne R., Ostro B., Page A., Pandey K.D., Parry C.D.H., Passmore E., Patra J., Pearce N., Pelizzari P.M., Petzold M., Phillips M.R., Pope D., Pope C.A., Powles J., Rao M., Razavi H., Rehfuess E.A., Rehm J.T., Ritz B., Rivara F.P., Roberts T., Robinson C., Rodriguez-Portales J.A., Romieu I., Room R., Rosenfeld L.C., Roy A., Rushton L., Salomon J.A., Sampson U., Sanchez-Riera L., Sanman E., Sapkota A., Seedat S., Shi P., Shield K., Shivakoti R., Singh G.M., Sleet D.A., Smith E., Smith K.R., Stapelberg N.J.C., Steenland K., Stöckl H., Stovner L.J., Straif K., Straney L., Thurston G.D., Tran J.H., Van Dingenen R., van Donkelaar A., Veerman J.L., Vijayakumar L., Weintraub R., Weissman M.M., White R.A., Whiteford H., Wiersma S.T., Wilkinson J.D., Williams H.C., Williams W., Wilson N., Woolf A.D., Yip P., Zielinski J.M., Lopez A.D., Murray C.J.L., Ezzati M., AlMazroa M.A., and Memish Z.A.: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the global burden of disease study 2010. Lancet 380(9859), 2224–2260 (2012).

    Google Scholar 

  66. Sundell J.: On the history of indoor air quality and health. Indoor Air 14(Suppl. 7), 51–58 (2004).

    Google Scholar 

  67. Runeson-Broberg R. and Norbäck D.: Sick building syndrome (SBS) and sick house syndrome (SHS) in relation to psychosocial stress at work in the Swedish workforce. Int. Arch. Occup. Environ. Health 86(8), 915–922 (2013).

    Google Scholar 

  68. Peng R.D., Butz A.M., Hackstadt A.J., Williams D.L., Diette G.B., Breysse P.N., and Matsui E.C.: Estimating the health benefit of reducing indoor air pollution in a randomized environmental intervention. J. R. Statist. Soc. A 178(2), 425–443 (2015).

    Google Scholar 

  69. Sundell J., Levin H., Nazaroff W.W., Cain W.S., Fisk W.J., Grimsrud D.T., Gyntelberg F., Li Y., Persily A.K., Pickering A.C., Samet J.M., Spengler J.D., Taylor S.T., and Weschler C.J.: Ventilation rates and health: Multidisciplinary review of the scientific literature. Indoor Air 21(3), 191–204 (2011).

    CAS  Google Scholar 

  70. Bornehag C.G., Blomquist G., Gyntelberg F., Järvholm B., Malmberg P., Nordvall L., Nielsen A., Pershagen G., and Sundell J.: Dampness in buildings and health. Nordic interdisciplinary review of the scientific evidence on associations between exposure to “dampness” in buildings and health effects (NORDDAMP). Indoor Air 11(2), 72–86 (2001).

    CAS  Google Scholar 

  71. Wargocki P., Sundell J., Bischof W., Brundrett G., Fanger P.O., Gyntelberg F., Hanssen S.O., Harrison P., Pickering A., Seppänen O., and Wouters P.: Ventilation and health in non-industrial indoor environments: Report from a European Multidisciplinary Scientific Consensus Meeting (EUROVEN). Indoor Air 12(2), 113–128 (2002).

    CAS  Google Scholar 

  72. Maddalena R., Mendell M.J., Eliseeva K., Chan W.R., Sullivan D.P., Russell M., Satish U., and Fisk W.J.: Effects of ventilation rate per person and per floor area on perceived air quality, sick building syndrome symptoms, and decision-making. Indoor Air 25(4), 362–370 (2015).

    CAS  Google Scholar 

  73. Park J.S. and Yoon C.H.: The effects of outdoor air supply rate on work performance during 8-h work period. Indoor Air 21(4), 284–290 (2011).

    CAS  Google Scholar 

  74. Seppänen O., Fisk W.J., and Lei Q.H.: Ventilation and performance in office work. Indoor Air 16(1), 28–36 (2006).

    Google Scholar 

  75. Haverinen-Shaughnessy U., Moschandreas D.J., and Shaughnessy R.J.: Association between substandard classroom ventilation rates and students’ academic achievement. Indoor Air 21(2), 121–131 (2011).

    CAS  Google Scholar 

  76. Lu T., Lü X., and Viljanen M.: A novel and dynamic demand-controlled ventilation strategy for CO2 control and energy saving in buildings. Energy Build. 43(9), 2499–2508 (2011).

    Google Scholar 

  77. Koebel M., Rigacci A., and Achard P.: Aerogel-based thermal superinsulation: An overview. J. Sol-Gel Sci. Technol. 63(3), 315–339 (2012).

    CAS  Google Scholar 

  78. Freedonia Market Study #2434: World Insulation (Freedonia, Cleveland, 2009).

    Google Scholar 

  79. Hale R.C., La Guardia M.J., Harvey E., and Mainor T.M.: Potential role of fire retardant-treated polyurethane foam as a source of brominated diphenyl ethers to the US environment. Chemosphere 46(5), 729–735 (2002).

    CAS  Google Scholar 

  80. Blanco F., García P., Mateos P., and Ayala J.: Characteristics and properties of lightweight concrete manufactured with cenospheres. Cem. Concr. Res. 30(11), 1715–1722 (2000).

    CAS  Google Scholar 

  81. Baetens R., Jelle B.P., Gustavsen A., and Grynning S.: Gas-filled panels for building applications: A state-of-the-art review. Energy Build. 42(11), 1969–1975 (2010).

    Google Scholar 

  82. Lux Research Market Study #17198: Mapping Advanced Insulation Materials to Markets: Assessing Aerogel, Vacuum Insulation Panel, and Phase-Change Material Opportunities Beyond Building Applications (2015).

    Google Scholar 

  83. Kwon J-S., Jang C.H., Jung H., and Song T-H.: Effective thermal conductivity of various filling materials for vacuum insulation panels. Int. J. Heat Mass Transfer 52(23), 5525–5532 (2009).

    CAS  Google Scholar 

  84. Simmler H. and Brunner S.: Vacuum insulation panels for building application: Basic properties, aging mechanisms and service life. Energy Build. 37(11), 1122–1131 (2005).

    Google Scholar 

  85. Stahl T., Brunner S., Zimmermann M., and Koebel M.: Thermally insulating aerogel based rendering materials. Patent WO 2014090790 A1, 2014.

    Google Scholar 

  86. Fickler S., Milow B., Ratke L., Schnellenbach-Held M., and Welsch T.: Development of high performance aerogel concrete. Energy Procedia 78, 406–411 (2015).

    CAS  Google Scholar 

  87. Rezaei S.D., Shannigrahi S., and Ramakrishna S.: A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment. Sol. Energy Mater. Sol. Cells 159, 26–51 (2017).

    CAS  Google Scholar 

  88. Manz H.: On minimizing heat transport in architectural glazing. Renew. Energy 33(1), 119–128 (2008).

    Google Scholar 

  89. Jelle B.P., Kalnæs S.E., and Gao T.: Low-emissivity materials for building applications: A state-of-the-art review and future research perspectives. Energy Build. 96, 329–356 (2015).

    Google Scholar 

  90. Van Den Bergh S., Hart R., Jelle B.P., and Gustavsen A.: Window spacers and edge seals in insulating glass units: A state-of-the-art review and future perspectives. Energy Build. 58, 263–280 (2013).

    Google Scholar 

  91. Jelle B.P., Hynd A., Gustavsen A., Arasteh D., Goudey H., and Hart R.: Fenestration of today and tomorrow: A state-of-the-art review and future research opportunities. Sol. Energy Mater. Sol. Cells 96, 1–28 (2012).

    CAS  Google Scholar 

  92. Gustavsen A., Grynning S., Arasteh D., Jelle B.P., and Goudey H.: Key elements of and material performance targets for highly insulating window frames. Energy Build. 43(10), 2583–2594 (2011).

    Google Scholar 

  93. Thalfeldt M., Pikas E., Kurnitski J., and Voll H.: Facade design principles for nearly zero energy buildings in a cold climate. Energy Build. 67, 309–321 (2013).

    Google Scholar 

  94. Hood T.G., Vincent S.M., and Booth R.: High performance, thermally insulating multipane glazing structure. U.S. Patent No. 5156894 A, 1992.

    Google Scholar 

  95. Collins R.E. and Simko T.M.: Current status of the science and technology of vacuum glazing. Sol. Energy 62(3), 189–213 (1998).

    Google Scholar 

  96. Simko T. and Collins R.E.: Vacuum glazing: Development, design challenges and commercialisation. Aust. J. Mech. Eng. 12(3), 305–316 (2014).

    Google Scholar 

  97. Cuce E. and Cuce P.M.: Vacuum glazing for highly insulating windows: Recent developments and future prospects. Renewable Sustainable Energy Rev. 54, 1345–1357 (2016).

    Google Scholar 

  98. Buratti C. and Moretti E.: Experimental performance evaluation of aerogel glazing systems. In Energy Solutions for a Sustainable World—Proceedings of the Third International Conference on Applied Energy, May 16-18, 2011-Perugia, Italy, Vol. 97 (2012); pp. 430–437.

    CAS  Google Scholar 

  99. Schultz J.M., Jensen K.I., and Kristiansen F.H.: Super insulating aerogel glazing. Sol. Energy Mater. Sol. Cells 89(2-3), 275–285 (2005).

    CAS  Google Scholar 

  100. Jensen K.I., Schultz J.M., and Kristiansen F.H.: Development of windows based on highly insulating aerogel glazings. In Aerogels 7. Proceedings of the 7th International Symposium on Aerogels 7th International Symposium on Aerogels, Vol. 350 (Alexandria, VA, 2004); pp. 351–357.

    CAS  Google Scholar 

  101. Reim M., Körner W., Manara J., Korder S., Arduini-Schuster M., Ebert H-P., and Fricke J.: Silica aerogel granulate material for thermal insulation and daylighting. CISBAT’03: Innovation in Building Envelopes and Environmental Systems 79(2), 131–139 (2005).

    CAS  Google Scholar 

  102. Raut H.K., Ganesh V.A., Nair A.S., and Ramakrishna S.: Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 4(10), 3779–3804 (2011).

    CAS  Google Scholar 

  103. Fernandes L.L., Lee E.S., McNeil A., Jonsson J.C., Nouidui T., Pang X., and Hoffmann S.: Angular selective window systems: Assessment of technical potential for energy savings. Energy Build. 90, 188–206 (2015).

    Google Scholar 

  104. Gong J., Kostro A., Motamed A., and Schueler A.: Potential advantages of a multifunctional complex fenestration system with embedded micro-mirrors in daylighting. Sol. Energy 139, 412–425 (2016).

    CAS  Google Scholar 

  105. Georg A., Georg A., Graf W., and Wittwer V.: Switchable windows with tungsten oxide. Vacuum 82(7), 730–735 (2008).

    CAS  Google Scholar 

  106. Granqvist C.G.: Electrochromic tungsten oxide films: Review of progress 1993-1998. Sol. Energy Mater. Sol. Cells 60(3), 201–262 (2000).

    CAS  Google Scholar 

  107. Wittwer V., Datz M., Ell J., Georg A., Graf W., and Walze G.: Gasochromic windows. Sol. Energy Mater. Sol. Cells 84(1), 305–314 (2004).

    CAS  Google Scholar 

  108. Hauch A., Georg A., Baumgärtner S., Krašovec U.O., and Orel B.: New photoelectrochromic device. Electrochim. Acta 46(13), 2131–2136 (2001).

    CAS  Google Scholar 

  109. Parkin I.P. and Manning T.D.: Intelligent thermochromic windows. J. Chem. Educ. 83(3), 393 (2006).

    CAS  Google Scholar 

  110. Livage J. and Ganguli D.: Sol-gel electrochromic coatings and devices: A review. Sol. Energy Mater. Sol. Cells 68(3), 365–381 (2001).

    CAS  Google Scholar 

  111. Lee S., Deshpande R., Parilla P.A., Jones K.M., To B., Mahan A.H., and Dillon A.C.: Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 18(6), 763–766 (2006).

    CAS  Google Scholar 

  112. Scherer M.R., Li L., Cunha P., Scherman O.A., and Steiner U.: Enhanced electrochromism in gyroid-structured vanadium pentoxide. Adv. Mater. 24(9), 1217–1221 (2012).

    CAS  Google Scholar 

  113. Sialvi M.Z., Mortimer R.J., Wilcox G.D., Teridi A.M., Varley T.S., Wijayantha K.U., and Kirk C.A.: Electrochromic and colorimetric properties of nickel(II) oxide thin films prepared by aerosol-assisted chemical vapor deposition. ACS Appl. Mater. Interfaces 5(12), 5675–5682 (2013).

    CAS  Google Scholar 

  114. Thakur V.K., Ding G., Ma J., Lee P.S., and Lu X.: Hybrid materials and polymer electrolytes for electrochromic device applications. Adv. Mater. 24(30), 4071–4096 (2012).

    CAS  Google Scholar 

  115. Marcilla R., Alcaide F., Sardon H., Pomposo J.A., Pozo-Gonzalo C., and Mecerreyes D.: Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochem. Commun. 8(3), 482–488 (2006).

    CAS  Google Scholar 

  116. Runnerstrom E.L., Llordés A., Lounis S.D., and Milliron D.J.: Nanostructured electrochromic smart windows: Traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun. 50(73), 10555–10572 (2014).

    CAS  Google Scholar 

  117. Stopper J., Boeing F., and Gstoehl D.: Fluid Glass Façade Elements: Energy Balance of an Office Space with a Fluid Glass Façade (Munich, Germany, 2013).

    Google Scholar 

  118. Pimputkar S., Speck J.S., DenBaars S.P., and Nakamura S.: Prospects for LED lighting. Nat. Photonics 3(4), 180 (2009).

    CAS  Google Scholar 

  119. Krames M.R., Shchekin O.B., Mueller-Mach R., Mueller G.O., Zhou L., Harbers G., and Craford M.G.: Status and future of high-power light-emitting diodes for solid-state lighting. J. Disp. Technol. 3(2), 160–175 (2007).

    CAS  Google Scholar 

  120. US Energy Information Administration: Trends in Lighting in Commercial Buildings (US EIA, Washington, 2017).

    Google Scholar 

  121. Kumar R. and Rosen M.A.: A critical review of photovoltaic-Thermal solar collectors for air heating. Appl. Energy 88(11), 3603–3614 (2011).

    CAS  Google Scholar 

  122. Tian Y. and Zhao C-Y.: A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 104, 538–553 (2013).

    CAS  Google Scholar 

  123. Kennedy C.E.: Review of Mid-to High-Temperature Solar Selective Absorber Materials, Vol. 1617 (National Renewable Energy Laboratory, Golden, CO, USA, 2002).

  124. Zambolin E. and Del Col D.: Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Sol. Energy 84(8), 1382–1396 (2010).

    CAS  Google Scholar 

  125. Sanner B., Karytsas C., Mendrinos D., and Rybach L.: Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics 32(4), 579–588 (2003).

    CAS  Google Scholar 

  126. Trillat-Berdal V., Souyri B., and Fraisse G.: Experimental study of a ground-coupled heat pump combined with thermal solar collectors. Energy Build. 38(12), 1477–1484 (2006).

    Google Scholar 

  127. Green M.A., Emery K., Hishikawa Y., Warta W., and Dunlop E.D.: Solar cell efficiency tables (Version 45). Prog. Photovoltaics 23(1), 1–9 (2015).

    Google Scholar 

  128. Omer S., Wilson R., and Riffat S.: Monitoring results of two examples of building integrated PV (BIPV) systems in the UK. Renew. Energy 28(9), 1387–1399 (2003).

    Google Scholar 

  129. Yang H., Zheng G., Lou C., An D., and Burnett J.: Grid-connected building-integrated photovoltaics: A Hong Kong case study. Sol. Energy 76(1), 55–59 (2004).

    Google Scholar 

  130. Heinstein P., Ballif C., and Perret-Aebi L-E.: Building integrated photovoltaics (BIPV): Review, potentials, barriers and myths. Green 3(2), 125–156 (2013).

    Google Scholar 

  131. Petter Jelle B., Breivik C., and Drolsum Røkenes H.: Building integrated photovoltaic products: A state-of-the-art review and future research opportunities. Sol. Energy Mater. Sol. Cells 100, 69–96 (2012).

    CAS  Google Scholar 

  132. Shukla A.K., Sudhakar K., and Baredar P.: A comprehensive review on design of building integrated photovoltaic system. Energy Build. 128, 99–110 (2016).

    Google Scholar 

  133. Redweik P., Catita C., and Brito M.: Solar energy potential on roofs and facades in an urban landscape. Sol. Energy 97, 332–341 (2013).

    Google Scholar 

  134. Tsoutsos T., Farmaki E., and Mandalaki M.: Solar energy for building supply. In Energy Performance of Buildings (2016); pp. 377–398.

    Google Scholar 

  135. Lottner V. and Mangold D.: Status of seasonal thermal energy storage in Germany. Proc. Terrastock, 1–8 (University of Stuttgart, Stuttgart, Germany, 2000).

    Google Scholar 

  136. Stene J.: Large-Scale Ground-Source Heat Pump Systems in Norway (IEA Annex 29 Workshop, Paris, France, 2008).

    Google Scholar 

  137. Hellström G.: Large-Scale Applications of Ground-Source Heat Pumps in Sweden (IEA Heat Pump Annex 29 Workshop, Zurich, 2008).

    Google Scholar 

  138. Zalba B., Marín J.M., Cabeza L.F., and Mehling H.: Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 23(3), 251–283 (2003).

    CAS  Google Scholar 

  139. Kaufmann J. and Winnefeld F.: Cement-based chemical energy stores. Patent WO2011147748 A1, 2011.

    Google Scholar 

  140. Dicaire D. and Tezel F.H.: Regeneration and efficiency characterization of hybrid adsorbent for thermal energy storage of excess and solar heat. Renew. Energy 36(3), 986–992 (2011).

    CAS  Google Scholar 

  141. Hongois S., Kuznik F., Stevens P., and Roux J-J.: Development and characterisation of a new MgSO4-zeolite composite for long-term thermal energy storage. Sol. Energy Mater. Sol. Cells 95(7), 1831–1837 (2011).

    CAS  Google Scholar 

  142. Fumey B., Weber R., Gantenbein P., Daguenet-Frick X., Williamson T., and Dorer V.: Closed sorption heat storage based on aqueous sodium hydroxide. Energy Procedia 48, 337–346 (2014).

    CAS  Google Scholar 

  143. Mette B., Kerskes H., and Drück H.: Concepts of long-term thermochemical energy storage for solar thermal applications—Selected examples. Energy Procedia 30, 321–330 (2012).

    CAS  Google Scholar 

  144. Khudhair A.M. and Farid M.M.: A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers. Manage. 45(2), 263–275 (2004).

    CAS  Google Scholar 

  145. Zhou D., Zhao C-Y., and Tian Y.: Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy 92, 593–605 (2012).

    CAS  Google Scholar 

  146. Jamekhorshid A., Sadrameli S., and Farid M.: A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable Sustainable Energy Rev. 31, 531–542 (2014).

    CAS  Google Scholar 

  147. Florides G. and Kalogirou S.: Ground heat exchangers—A review of systems, models and applications. Renew. Energy 32(15), 2461–2478 (2007).

    CAS  Google Scholar 

  148. Yang H., Cui P., and Fang Z.: Vertical-borehole ground-coupled heat pumps: A review of models and systems. Appl. Energy 87(1), 16–27 (2010).

    Google Scholar 

  149. Wang C., Chang Y., Zhang L., Pang M., and Hao Y.: A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China. Energy 120, 374–384 (2017).

    CAS  Google Scholar 

  150. Kasurinen S., Jalava P.I., Tapanainen M., Uski O., Happo M.S., Mäki-Paakkanen J., Lamberg H., Koponen H., Nuutinen I., Kortelainen M., Jokiniemi J., and Hirvonen M-R.: Toxicological effects of particulate emissions—A comparison of oil and wood fuels in small- and medium-scale heating systems. Atmos. Environ. 103, 321–330 (2015).

    CAS  Google Scholar 

  151. Sippula O., Hokkinen J., Puustinen H., Yli-Pirilä P., and Jokiniemi J.: Comparison of particle emissions from small heavy fuel oil and wood-fired boilers. Atmos. Environ. 43(32), 4855–4864 (2009).

    CAS  Google Scholar 

  152. Zambrana-Vasquez D., Aranda-Usón A., Zabalza-Bribián I., Jañez A., Llera-Sastresa E., Hernandez P., and Arrizabalaga E.: Environmental assessment of domestic solar hot water systems: A case study in residential and hotel buildings. J. Cleaner Prod. 88, 29–42 (2015).

    Google Scholar 

  153. Forman C., Muritala I.K., Pardemann R., and Meyer B.: Estimating the global waste heat potential. Renewable Sustainable Energy Rev. 57, 1568–1579 (2016).

    Google Scholar 

  154. Eichholz H.D. and Schulz S.: Practical recognized facts from a glass laboratory absorption heatpump for methyl-alcohol working fluid mixtures. Kälte und Klimatechnik 35, 378 (1982).

    Google Scholar 

  155. Jernqvist Å., Abrahamsson K., and Aly G.: On the efficiencies of absorption heat transformers. Heat Recovery Syst. CHP 12(4), 323–334 (1992).

    CAS  Google Scholar 

  156. Ziegler F.: Recent developments and future prospects of sorption heat pump systems. Int. J. Therm. Sci. 38(3), 191–208 (1999).

    CAS  Google Scholar 

  157. Shelton S.V.: Resedential space conditioning with solid sorption technology. Heat Recovery Syst. CHP 13(4), 353–361 (1993).

    Google Scholar 

  158. Meunier F.: Solid sorption heat powered cycles for cooling and heat pumping applications. Appl. Therm. Eng. 18(9), 715–729 (1998).

    CAS  Google Scholar 

  159. Henninger S., Schmidt F., and Henning H-M.: Water adsorption characteristics of novel materials for heat transformation applications. Appl. Therm. Eng. 30(13), 1692–1702 (2010).

    CAS  Google Scholar 

  160. Dell R.M. and Rand D.A.J.: Energy storage—A key technology for global energy sustainability. J. Power Sources 100(1), 2–17 (2001).

    CAS  Google Scholar 

  161. Luthander R., Widén J., Nilsson D., and Palm J.: Photovoltaic selfconsumption in buildings: A review. Appl. Energy 142, 80–94 (2015).

    Google Scholar 

  162. Deane J.P., Gallachóir B.Ó., and McKeogh E.: Techno-economic review of existing and new pumped hydro energy storage plant. Renewable Sustainable Energy Rev. 14(4), 1293–1302 (2010).

    Google Scholar 

  163. Lund H. and Salgi G.: The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers. Manage. 50(5), 1172–1179 (2009).

    Google Scholar 

  164. Cheung B., Carriveau R., and Ting D.S.: Storing energy underwater. Mech. Eng. 134(12), 38 (2012).

    Google Scholar 

  165. Divya K. and Østergaard J.: Battery energy storage technology for power systems—An overview. Electr. Power Syst. Res. 79(4), 511–520 (2009).

    Google Scholar 

  166. Dufo-López R., Lujano-Rojas J.M., and Bernal-Agustín J.L.: Comparison of different lead-acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems. Appl. Energy 115, 242–253 (2014).

    Google Scholar 

  167. Nykvist B. and Nilsson M.: Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5(4), 329–332 (2015).

    Google Scholar 

  168. Kim H., Boysen D.A., Newhouse J.M., Spatocco B.L., Chung B., Burke P.J., Bradwell D.J., Jiang K., Tomaszowska A.A., and Wang K.: Liquid metal batteries: Past, present, and future. Chem. Rev. 113(3), 2075–2099 (2012).

    Google Scholar 

  169. Kear G., Shah A.A., and Walsh F.C.: Development of the all-vanadium redox flow battery for energy storage: A review of technological, financial and policy aspects. Int. J. Energy Res. 36(11), 1105–1120 (2012).

    CAS  Google Scholar 

  170. Wang W., Luo Q., Li B., Wei X., Li L., and Yang Z.: Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23(8), 970–986 (2013).

    CAS  Google Scholar 

  171. Khaligh A. and Li Z.: Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art. IEEE Trans. Veh. Technol. 59(6), 2806–2814 (2010).

    Google Scholar 

  172. Dounis A.I. and Caraiscos C.: Advanced control systems engineering for energy and comfort management in a building environment—A review. Renewable Sustainable Energy Rev. 13(6-7), 1246–1261 (2009).

    Google Scholar 

  173. Ikeda S. and Ooka R.: Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system. Appl. Energy 151, 192–205 (2015).

    Google Scholar 

  174. Chan M., Estève D., Escriba C., and Campo E.: A review of smart homes—Present state and future challenges. Comput. Meth. Prog. Bio. 91(1), 55–81 (2008).

    Google Scholar 

  175. Dorer V. and Weber A.: Energy and CO2 emissions performance assessment of residential micro-cogeneration systems with dynamic whole-building simulation programs. Energy Convers. Manage. 50(3), 648–657 (2009).

    CAS  Google Scholar 

  176. Široký J., Oldewurtel F., Cigler J., and Prívara S.: Experimental analysis of model predictive control for an energy efficient building heating system. Appl. Energy 88(9), 3079–3087 (2011).

    Google Scholar 

  177. Fong K.F., Hanby V.I., and Chow T.T.: HVAC system optimization for energy management by evolutionary programming. Energy Build. 38(3), 220–231 (2006).

    Google Scholar 

  178. Attia S., Hamdy M., O’Brien W., and Carlucci S.: Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design. Energy Build. 60, 110–124 (2013).

    Google Scholar 

  179. Magnier L. and Haghighat F.: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network. Build. Environ. 45(3), 739–746 (2010).

    Google Scholar 

  180. Wang J., Zhai Z.J., Jing Y., and Zhang C.: Particle swarm optimization for redundant building cooling heating and power system. Appl. Energy 87(12), 3668–3679 (2010).

    Google Scholar 

  181. Oldewurtel F., Parisio A., Jones C.N., Gyalistras D., Gwerder M., Stauch V., Lehmann B., and Morari M.: Use of model predictive control and weather forecasts for energy efficient building climate control. Energy Build. 45, 15–27 (2012).

    Google Scholar 

  182. Missaoui R., Joumaa H., Ploix S., and Bacha S.: Managing energy smart homes according to energy prices: Analysis of a building energy management system. Energy Build. 71, 155–167 (2014).

    Google Scholar 

  183. Tsui K.M. and Chan S.C.: Demand response optimization for smart home scheduling under real-time pricing. IEEE Trans. Smart Grid 3(4), 1812–1821 (2012).

    Google Scholar 

  184. Orehounig K., Evins R., and Dorer V.: Integration of decentralized energy systems in neighbourhoods using the energy hub approach. Appl. Energy 154, 277–289 (2015).

    Google Scholar 

  185. Lauster M., Teichmann J., Fuchs M., Streblow R., and Mueller D.: Low order thermal network models for dynamic simulations of buildings on city district scale. Build. Environ. 73, 223–231 (2014).

    Google Scholar 

  186. Siano P.: Demand response and smart grids—A survey. Renewable Sustainable Energy Rev. 30, 461–478 (2014).

    Google Scholar 

  187. Pacheco R., Ordóñez J., and Martínez G.: Energy efficient design of building: A review. Renewable Sustainable Energy Rev. 16(6), 3559–3573 (2012).

    Google Scholar 

  188. Rodriguez-Ubinas E., Montero C., Porteros M., Vega S., Navarro I., Castillo-Cagigal M., Matallanas E., and Gutiérrez A.: Passive design strategies and performance of net energy plus houses. Energy Build. 83, 10–22 (2014).

    Google Scholar 

  189. Copiello S.: Economic implications of the energy issue: Evidence for a positive non-linear relation between embodied energy and construction cost. Energy Build. 123, 59–70 (2016).

    Google Scholar 

  190. Greening L.A., Greene D.L., and Difiglio C.: Energy efficiency and consumption—The rebound effect—A survey. Energy Policy 28(6-7), 389–401 (2000).

    Google Scholar 

  191. Sorrell S., Dimitropoulos J., and Sommerville M.: Empirical estimates of the direct rebound effect: A review. Energy Policy 37(4), 1356–1371 (2009).

    Google Scholar 

  192. Böninger M.: Wie viel Wohnraum braucht der Mensch?—Stadt Zürich (2013). Available at: https://www.stadt-zuerich.ch/prd/de/index/ statistik/publikationen-angebote/publikationen/webartikel/2013-03-28_ Wie-viel-Wohnraum-braucht-der-Mensch.html (accessed December 5, 2016).

    Google Scholar 

  193. Wie private Haushalte die Umwelt nutzen—Höherer Energieverbrauch trotz Effizienzsteigerungen (Umwelt Bundesamt, 2006). Available at: https://www.destatis.de/DE/PresseService/Presse/Pressekonferenzen/2006/ UGR/UBA_Hintergrundpapier.pdf?_blob=publicationFile (accessed December 5, 2016).

  194. Galvin R.: Making the “rebound effect” more useful for performance evaluation of thermal retrofits of existing homes: Defining the “energy savings deficit” and the “energy performance gap”. Energy Build. 69, 515–524 (2014).

    Google Scholar 

  195. Kerr R. and Toy D.: Final Report: Occupied Home Evaluation Results (Building Industry Research Alliance (BIRA), Stockton, CA, 2007). Available at: https://www.consol.ws/services/consulting/files/reports/ Final_Report_16D2_OccupiedHomeEvaluationResults.pdf (accessed December 5, 2016).

    Google Scholar 

  196. Janda K.B.: Buildings don’t use energy: People do. Archit. Sci. Rev. 54(1), 15–22 (2011).

    Google Scholar 

  197. Stevenson F. and Leaman A.: Evaluating housing performance in relation to human behaviour: New challenges. Build. Res. Inf. 38(5), 437–441 (2010).

    Google Scholar 

  198. Energieplanungsbericht 2013 (AWEL, Abteilung Energie, Zürich, 2013). Available at: https://www.zh.ch/internet/de/aktuell/news/ medienmitteilungen/2014/energieplanungsbericht_zeigt_erfolge_ und_herausforderungen.html (accessed October 18, 2017).

  199. Ma Z., Cooper P., Daly D., and Ledo L.: Existing building retrofits: Methodology and state-of-the-art. Energy Build. 55, 889–902 (2012).

    Google Scholar 

  200. Kumbaroğlu G. and Madlener R.: Evaluation of economically optimal retrofit investment options for energy savings in buildings. Energy Build. 49, 327–334 (2012).

    Google Scholar 

  201. Asadi E., da Silva M.G., Antunes C.H., Dias L., and Glicksman L.: Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy Build. 81, 444–456 (2014).

    Google Scholar 

  202. Girod B., Lang T., and Nägele F.: Energieeffizienz in Gebäuden: Herausforderungen und Chancen für Energieversorger und Technologiehersteller (2014). Available at: http://www.sustec.ethz.ch/ content/dam/ethz/special-interest/mtec/sustainability-and-technology/ PDFs/SER_Final_report.pdf (accessed December 5, 2016).

    Google Scholar 

  203. Achtnicht M. and Madlener R.: Factors influencing German house owners’ preferences on energy retrofits. Energy Policy 68, 254–263 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias M. Koebel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koebel, M.M., Wernery, J. & Malfait, W.J. Energy in buildings—Policy, materials and solutions. MRS Energy & Sustainability 4, 12 (2017). https://doi.org/10.1557/mre.2017.14

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2017.14

Keywords

Navigation