Skip to main content

Advertisement

Log in

Sustainable carbon emissions: The geologic perspective

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

An Erratum to this article was published on 06 October 2015

This article has been updated

Abstract

Current issues with carbon emissions need to be understood in terms of natural geologic processes that move carbon on the Earth. Comparison of modern emissions with the norms and extremes of natural processes emphasizes the enormity of the current challenge, and also the reason there are uncertainties about the future effects. Reaching sustainable emissions in the future can be viewed as a need to systematically reduce the carbon intensity of energy production.

Achieving sustainable carbon emissions requires understanding of Earth’s natural carbon cycles. Geologic processes move carbon in large quantities between Earth reservoirs, including in and out of the deeper reaches of the planet, and regulate Earth’s surface temperature within a narrow range suitable for life for the past 3–4 billion years. There have been large changes in atmospheric CO2 in the geologic past; the largest to offset changes in the brightness of the Sun. Atmospheric CO2 has been much higher in the past, but not since humans evolved. Geologic processes act slowly, even during times in the geologic past regarded as examples of catastrophic climate change. In contrast, over the past 100 years, Earth’s carbon cycles have undergone revolutionary change as a result of a greatly accelerated transfer of carbon from geologic storage to the atmosphere. Today, about 98% of the movement of carbon out of geologic reservoirs (coal-, oil-, and gas-bearing sedimentary rocks and limestone) into the atmosphere is due to human activities; the total carbon flux is 40–50 times the geologic flux. The extremely large modern carbon flux is unprecedented in Earth history. Returning to a sustainable carbon cycle requires systematic lowering of the carbon emission intensity of energy production over the next century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.

Similar content being viewed by others

Change history

References

  1. Archer D. and Brovkin V.: The millennial atmospheric lifetime of anthropogenic CO2. Clim. Change 90, 283–297 (2008).

    CAS  Google Scholar 

  2. Archer D., Eby M., and Brovkin V.: Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37, 117–134 (2009).

    CAS  Google Scholar 

  3. Archer D., Kheshgi H., and Maier-Reimer E.: Dynamics of fossil fuel CO2 neutralization by marine CaCO3. Global Biogeochem. Cycles 12, 259–276 (1998).

    CAS  Google Scholar 

  4. Arrhenius S.: On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag. 41, 237–276 (1896).

    CAS  Google Scholar 

  5. Beerling D.J. and Royer D.L.: Convergent cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011).

    CAS  Google Scholar 

  6. Benson S.M. and Cook P.: Underground geological storage. In Carbon Dioxide Capture and Storage: Special Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press: Interlachen, Switzerland, 5-1 to 5-134, 2005.

    Google Scholar 

  7. Berner R.A.: The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426, 323–326 (2003).

    CAS  Google Scholar 

  8. Berner R.A.: GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 294, 56–91 (1994).

    CAS  Google Scholar 

  9. Berner R.A., Lasaga A.C., and Garrels R.M.: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    CAS  Google Scholar 

  10. Broecker W.S., Takahashi T., Simpson H.H., and Peng T.H.: Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206, 409–418 (1979).

    CAS  Google Scholar 

  11. Burton M.R., Sawyer G.M., and Granieri D.: Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75, 323–354 (2013).

    CAS  Google Scholar 

  12. Caldeira K.: Long-term control of atmospheric carbon-dioxide—low-temperature sea-floor alteration or terrestrial silicate-rock weathering. Am. J. Sci. 295(9), 1077–1114 (1995).

    CAS  Google Scholar 

  13. Caldeira K., Jain A.K., and Hoffert M.I.: Climate sensitivity uncertainty and the need for energy without CO2 emission. Science 299, 2052–2054 (2003).

    CAS  Google Scholar 

  14. Canadell J.G., Pataki D.E., Gifford R., Houghton R.A., and Luo Y.: Saturation of the terrestrial carbon sink. In Terrestrial Ecosystems in a Changing World, Canadell J.G., Pataki D., and Pitelka L. eds.; Springer-Verlag: Berlin, 2007; pp. 59–78.

    Google Scholar 

  15. Ciais P., Sabine C., Bala G., Bopp L., Brovkin V., Canadell J., Chhabra A., DeFries R., Galloway J., Heimann M., Jones C., Le Quéré C., Myneni R.B., Piao S., and Thornton P.: Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker T.F., Qin D., Plattner G-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., and Midgley P.M. eds.; Cambridge University Press: Cambridge, New York, NY, USA, 2013.

    Google Scholar 

  16. Cox P.M., Betts R.A., Jones C.D., Spall S.A., and Totterdell I.J.: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).

    CAS  Google Scholar 

  17. Cui Y., Kump L.R., Ridgwell A.J., Charles A.J., Junium C.K., Diefendorf A.F., Freeman K.H., Urban N.M., and Harding I.C.: Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum. Nat. Geosci. 4, 481–485 (2011).

    CAS  Google Scholar 

  18. DasGupta R.: Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 75, 183–229 (2013).

    CAS  Google Scholar 

  19. Dasgupta R. and Hirschmann M.M.: The deep carbon cycle and melting in earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010).

    CAS  Google Scholar 

  20. Davidson E.A. and Janssens I.A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    CAS  Google Scholar 

  21. DeConto R.M. and Pollard D.: Rapid cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421, 245–249 (2003).

    CAS  Google Scholar 

  22. Dickens G.R., O’Neil J.R., Res D.K., and Owen R.M.: Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995).

    Google Scholar 

  23. Edmond J.M. and Huh Y.: Non-steady state carbonate recycling and implications for the evolution of atmospheric PCO2. Earth Planet. Sci. Lett. 216, 125–139 (2003).

    CAS  Google Scholar 

  24. England M.H. and Maier-Reimer E.: Using chemical tracers to assess ocean models. Rev. Geophys. 39, 29–70 (2001).

    CAS  Google Scholar 

  25. EPICA Community Members: Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).

    Google Scholar 

  26. Fraser K., Johnston B., Turchyn A.V., and Edmonds M.: Decarbonation efficiency in subduction zones: Implications for warm Cretaceous climates. Earth Planet. Sci. Lett. 303, 143–152 (2011).

    Google Scholar 

  27. Friedlingstein P., Meinshausen M., Arora V.K., Jones C.D., Anav A., Liddicoat S.K., and Knutti R.: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    Google Scholar 

  28. Gaudinski J.B., Trumbore S.E., Davidson E.A., and Zheng S.: Soil carbon cycling in a temperate forest: Radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51, 33–69 (2000).

    Google Scholar 

  29. Gerlach T.M.: Volcanic versus anthropogenic carbon dioxide. EOS Trans. 92(24), 201–208 (2011).

    Google Scholar 

  30. Gough D.O.: Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).

    CAS  Google Scholar 

  31. Graven H.D., Keeling R.F., Piper S.C., Patra P.K., Stephens B.B., Wofsy S.C., Welp L.R., Sweeney C., Tans P.P., Kelley J.J., Daube B.C., Kort E.A., Santoni G.W., and Bent J.D.: Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).

    CAS  Google Scholar 

  32. Hoffman P.F., Kaufman A.J., Halverson G.P., and Schrag D.P.: A Neoproterozoic snowball earth. Science 281, 1342–1346 (1998).

    CAS  Google Scholar 

  33. Hoffman P.F. and Schrag D.P.: The snowball earth hypothesis: Testing the limits of global change. Terra Nova 14, 129–155 (2002).

    CAS  Google Scholar 

  34. Houghton R.A.: Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35, 313–347 (2007).

    CAS  Google Scholar 

  35. Kasting J.F.: Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988).

    CAS  Google Scholar 

  36. Kasting J.F.: Earth’s early atmosphere. Science 259, 920–926 (1993).

    CAS  Google Scholar 

  37. Kasting J.F. and Catling D.: Evolution of a habitable earth. Annu. Rev. Astron. Astrophys. 41, 429–463 (2003).

    CAS  Google Scholar 

  38. Kasting J.F.: Faint young sun redux. Nature 464, 687–689 (2010).

    CAS  Google Scholar 

  39. Keeling C.D., Piper S.C., Bacastow R.B., Wahlen M., and Whorf T.P.: Exchanges of Atmospheric CO2 and 13CO2 with the Terrestrial Biosphere and Oceans from 1978 to 2000. I. Global Aspects (Scripps Institution of Oceanography, San Diego, 2001). Technical Report SIO Reference Series No. 01–06 (Revised from SIO Reference Series No. 00–21).

    Google Scholar 

  40. Kennett J.P. and Stott L.D.: Abrupt deep sea warming, paleoceanographic changes and benthic extinctions at the end of the Paleocene. Nature 353, 319–322 (1991).

    Google Scholar 

  41. Kerrick D.M. and Caldeira K.: Metamorphic CO2 degassing from orogenic belts. Chem. Geol. 145, 213–232 (1998).

    CAS  Google Scholar 

  42. Kirschvink J.L., Gaidos E.J., Bertani E., Beukes N.J., Gutzmer J., Maepa L.N., and Steinberger R.E.: Paleoproterozoic snowball earth: Extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci U S A 97, 1400–1405 (2000).

    CAS  Google Scholar 

  43. Knutti R. and Hegerl G.C.: The equilibrium sensitivity of the earth’s temperature to radiation changes. Nat. Geosci. 1, 735–743 (2008).

    CAS  Google Scholar 

  44. LeQuere E.: Global carbon budget 2014. Earth Syst. Sci. Data Discuss. 7, 521–610 (2014).

    Google Scholar 

  45. Levin I., Naegler T., Kromer B., Diehl M., Francey R.J., Gomez-Pelaez A.J., Steele L.P., Wagenbach D., Weller R., and Worthy D.E.: Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus 62B, 26–46 (2010).

    CAS  Google Scholar 

  46. Lowenstein T.K., Kendall B., and Anbar A.D.: 8.21—The geologic history of seawater. In The Treatise on Geochemistry, Vol. 8, 2nd ed., Elsevier: 2014; pp. 569–620.

    Google Scholar 

  47. Machta L.: Mauna Loa and global trends in air quality. Bull. Am. Meteorol. Soc. 53, 402–420 (1972).

    Google Scholar 

  48. Maher K. and Chamberlain C.P.: Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 343, 1502–1504 (2014).

    CAS  Google Scholar 

  49. McCauley S. and DePaolo D.J.: The marine 87Sr/86Sr and ∂18O records, Himalayan alkalinity fluxes and Cenozoic climate models. In Tectonic Uplift and Climate Change, Ruddiman W.F. ed.; Plenum Press, New York: 1997; pp. 427–467.

    Google Scholar 

  50. McInerney F.A. and Wing S.L.: The Paleocene-Eocene Thermal Maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516 (2011).

    CAS  Google Scholar 

  51. McNeil B.I., Matear R.J., Key R.M., Bullister J.L., and Sarmiento J.L.: Anthropogenic CO2 uptake by the ocean based on the global chlorofluorocarbon data set. Science 299, 235–239 (2003).

    CAS  Google Scholar 

  52. Morner N-A. and Etiope G.: Carbon degassing from the lithosphere. Global Planet Change 33, 185–203 (2002).

    Google Scholar 

  53. Monnin E., Indermuhle A., Dallenbach A., Fluckiger J., and Stauffer B.: Atmospheric CO2 concentrations over the last glacial termination. Science 29, 112–114 (2001).

    Google Scholar 

  54. Naegler T., Ciais P., Rodgers K., and Levin I.: Excess radiocarbon constraints on air-sea gas exchange and the uptake of CO2 by the oceans. Geophys. Res. Lett. 33, L11802 (2006). doi: 10.1029/2005GL025408.

    Google Scholar 

  55. Naegler T. and Levin I.: Biosphere-atmosphere gross carbon exchange flux and the δ13CO2 and Δ14CO2 disequilibria constrained by the biospheric excess radiocarbon inventory. J. Geophys. Res. 114, D17303 (2009).

    Google Scholar 

  56. Nakamori T.: Global carbonate accumulation rates from Cretaceous to Present and their implications for the carbon cycle model. Isl. Arc 10, 1–8 (2001).

    CAS  Google Scholar 

  57. National Research Council: America’s Energy Future: Technology and Transformation, summary edition (National Academy Press, Washington, D.C. 2009); 184 pp.

    Google Scholar 

  58. National Research Council: Origin and Evolution of Earth: Research Questions for a Changing Planet (National Academy Press, Washington, D.C. 2008); 200 pp.

    Google Scholar 

  59. National Research Council: Climate Stabilization Targets: Emissions, Concentrations, and Impacts Over Decades to Millennia (National Academy Press, Washington, D.C. 2011); 298 pp.

    Google Scholar 

  60. National Research Council: Understanding Earth’s Deep Past: Lessons for Our Climate Future (National Academy Press, Washington, D.C. 2011); 212 pp.

    Google Scholar 

  61. National Research Council: Climate Change: Evidence, Impacts, and Choices (National Academy Press, Washington, D.C. 2012); 38 pp.

    Google Scholar 

  62. Pacala S. and Socolow R.: Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 305(5686), 968–972 (2004).

    CAS  Google Scholar 

  63. Pagani M., Zachos J.C., Freeman K.H., Tipple B., and Bohaty S.: Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005).

    CAS  Google Scholar 

  64. Patra P.K., Maksyutov S., and Nakazawa T.: Analysis of atmospheric CO2 growth rates at Mauna Loa using CO2 fluxes derived from an inverse model. Tellus 57B, 357–365 (2005).

    CAS  Google Scholar 

  65. Pavlov A.A., Kasting J.F., Brown L.L., Rages K.A., and Freedman R.: Greenhouse warming by CH4 in the atmosphere of early earth. J. Geophys. Res. 105, 11, 981-11, 990 (2000).

    Google Scholar 

  66. Pearson P.N. and Palmer M.R.: Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–699 (2000).

    CAS  Google Scholar 

  67. Pierrehumbert R.T.: Infrared radiation and planetary temperature. Phys. Today 64, 33–38 (2011).

    Google Scholar 

  68. Pierrehumbert R.T., Abbot D.S., Voigt A., and Koll D.: Climate of the Neoproterozoic. Annu. Rev. Earth Planet. Sci. 39, 417–460 (2011).

    CAS  Google Scholar 

  69. Richards M.A., Yang W-S., Baumgardner J.R., and Bunge H-P.: Role of a low-viscosity zone in stabilizing plate tectonics: Implications for comparative terrestrial planetology. Geochem., Geophys., Geosyst. 2, (2001). doi: 10.1029/2000GC000115.

  70. Ridgwell A. and Hargreaves J.C.: Regulation of atmospheric CO2 by deep-sea sediments in an earth system model. Global Biogeochem. Cycles 21, GB2008 (2007).

    Google Scholar 

  71. Ruddiman W.F.: The Anthropocene. Annu. Rev. Earth Planet. Sci. 41, 45–68 (2013).

    CAS  Google Scholar 

  72. Sabine C.L., Feely R.A., Gruber N., Key R.M., and Lee K.: The oceanic sink for anthropogenic CO2. Science 305, 367–371 (2004).

    CAS  Google Scholar 

  73. Sandberg P.A.: Nonskeletal aragonite and pCO2 in the phanerozoic and proterozoic. In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Vol. 32, American Geophysical Union Monograph: Washington, D.C. 1985; pp. 585–594.

    Google Scholar 

  74. Sarmiento J.L.: Ocean carbon cycle. Chem. Eng. News 71, 30–43 (1993).

    CAS  Google Scholar 

  75. Satish U. Mendell M.J., Shekhar K., Hotchi T., Sullivan D., Streufert S., and Fisk W.J.: Is CO2 an indoor pollutant? direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 120, 1671–1677 (2015).

    Google Scholar 

  76. Schrag D.P., Berner R.A., Hoffman P.F., and Halverson G.P.: On the initiation of a snowball earth. Geochem., Geophys., Geosyst. 3(6), (2002). doi: 10.1029/2001GC000219.

    Google Scholar 

  77. Sigman D.M. and Boyle E.A.: Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    CAS  Google Scholar 

  78. Sleep N.H., Zahnle K., and Neuhoff P.S.: Initiation of clement surface conditions on the early earth. Proc. Natl. Acad. Sci. U. S. A. 98, 3666–3672 (2001).

    CAS  Google Scholar 

  79. Sleep N.H., Bird D.K., and Pope E.: Paleontology of earth’s mantle. Annu. Rev. Earth Planet. Sci. 40, 277–300 (2012).

    CAS  Google Scholar 

  80. Schmitz R.A.: The Earth’s carbon cycle. Chem. Eng. Educ. 36, 296–304 (Fall 2002).

    CAS  Google Scholar 

  81. Staudigel H.: Hydrothermal alteration processes in the oceanic crust. Treatise on Geochemistry 3, 511–535 (2003).

    Google Scholar 

  82. Walker J.C.G., Hays P.B., and Kasting J.F.: A negative feedback mechanism for the long term stabilization of earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    CAS  Google Scholar 

  83. Wood B., Li J., and Shahar A.: Carbon in the core: Its influence on the properties of core and mantle. Rev. Mineral. Geochem. 75, 231–250 (2013).

    CAS  Google Scholar 

  84. Wordsworth R. and Pierrehumbert R.: Hydrogen-nitrogen greenhouse warming in Earth’s early atmosphere. Science 339, 64–67 (2013).

    CAS  Google Scholar 

  85. Yu J., Broecker W.S., Elderfield H., Jin Z., McManus J., and Zhang F.: Loss of carbon from the deep sea since the last glacial maximum. Science 330, 1084–1087 (2010).

    CAS  Google Scholar 

  86. Zachos J., Pagani M., Sloan L., Thomas E., and Billups K.: Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    CAS  Google Scholar 

  87. Zachos J.C., Dickens G.R., and Zeebe R.E.: An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

    CAS  Google Scholar 

  88. Zeebe R.E.: History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annu. Rev. Earth Planet. Sci. 40, 141–165 (2012).

    CAS  Google Scholar 

  89. Zhang Y.X. and Zindler A.: Distribution and evolution of carbon and nitrogen in earth. Earth Planet. Sci. Lett. 117, 331–345 (1993).

    CAS  Google Scholar 

Download references

Acknowledgments

The author thanks A.P. Alivisatos and S.M. Benson for encouragement to prepare this review, and to the Office of Science, Department of Energy, for its support of an Energy Frontier Research Center in carbon storage science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald J. DePaolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DePaolo, D.J. Sustainable carbon emissions: The geologic perspective. MRS Energy & Sustainability 2, 9 (2015). https://doi.org/10.1557/mre.2015.10

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2015.10

Keywords

Navigation