Skip to main content

Effects of nanoporous Au on ATP synthase

Abstract

Nanoporous Au shows the antimicrobial activity without the release of ROS. The cell wall is hyperpolarized by npAu. Hence, the hyperpolarized cell wall may affect ATP synthase, leading to the bacterial death. In the present work, the effects of the hyperpolarized cell wall on the structure and functions of Asp61 in ATP synthase are investigated by molecular dynamics simulations and first-principles calculations. The simulations suggest that the Asp61 is more negatively hyperpolarized, which is due to the strengthened O-H bond in Asp61, in interacting with the hyperpolarized cell wall, which results in the disturbance of proton transport in ATP synthase.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    S. Sadhasivam, P. Shanmugam, M. Veerapandian, R. Subbiah, and K. Yun: Biogenic synthesis of multidimensional gold nanoparticles assisted by Streptomyces hygroscopicus and its electrochemical and antibacterial properties. Biometals 25, 351–360 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Cui, Y. Zhao, Y. Tian, W. Zhang, X. Lu, and X. Jiang: The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33, 2327–2333 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Y. Zhang, H. Peng, W. Huang, Y. Zhou, and D. Yan: Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J. Colloid Interface Sci. 325, 371–376 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    D. Sabert, S. Engelbrecht, and W. Junge: Intersubunit rotation in active F-ATPase. Nature 381, 623–625 (1996).

    Article  Google Scholar 

  5. 5.

    H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita Jr.: Direct observation of the rotation of F1-ATPase. Nature 386, 249–302 (1997).

    Article  Google Scholar 

  6. 6.

    J.L. Martin, R. Ishmukhametov, D. Spetzler, T. Hornung, and W.D. Frasch: Elastic coupling power stroke mechanism of the F1-ATPase molecular motor. Proc. Natl. Acad. Sci. USA 115, 5750–5755 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    B. Galeano, E. Korff, and W.L. Nicholson: Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation. Appl. Environ. Microbiol. 69, 4329–4331 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    F.U. Khan, Y. Chen, N.U. Khan, A. Ahmad, K. Thahir, Z.U. Khan, A.U. Khan, S.U. Khan, M. Raza, and P. Wan: Visible light inactivation of E. coli, cytotoxicity and ROS determination of biochemically capped gold nanoparticles. Microb. Pathog. 107, 419–427 (2017).

    Article  Google Scholar 

  9. 9.

    G. Zhao and S.E. Stevens Jr.: Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. BioMetals 11, 27–32 (1998).

    CAS  Article  Google Scholar 

  10. 10.

    M. Hakamada, S. Taniguchi, and M. Mabuchi: Antibacterial activity of nanoporous gold against Escherichia coli and Staphylococcus epidermidis. J. Mater. Res. 32, 1787–1795 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    N. Miyazawa, M. Hakamada, and M. Mabuchi: Antibacterial mechanisms due to hyperpolarization induced by nanoporous Au. Sci. Rep. 8, 3870, 1–8 (2018).

    Google Scholar 

  12. 12.

    A.P. Srivastava, M. Luo, W. Zhou, J. Symersky, D. Bai, M.G. Chambers, J.D. Faraldo-Gómez, M. Liao, and D.M. Mueller: High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane. Science 360 (2018). doi: 10.1126/science.aas9699.

  13. 13.

    P.D. Boyer: The ATP synthase a splendid molecular machine. Annu. Rev. Microbiol. 66, 717–749 (1997).

    CAS  Google Scholar 

  14. 14.

    G. Deckers-Hebestreit and K. Altendorf: The F0F1-type ATP synthesis of bacteria: structure and function of the F0 complex. Annu. Rev. Microbiol. 50, 791–824 (1996).

    CAS  Article  Google Scholar 

  15. 15.

    R.H. Fillingame: Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine. J. Exp. Biol. 200, 217–224 (1997).

    CAS  Google Scholar 

  16. 16.

    R.H. Fillingame: The Bacteria, Vol. 2 (Academic, New York, 1990) pp. 345–391.

    Google Scholar 

  17. 17.

    T.M. Duncan, V.V. Bulygin, Y. Zhou, M.L. Hutcheon, and R.L. Cross: Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc. Natl. Acad. Sci. USA 92, 10964–10968 (1995).

    CAS  Article  Google Scholar 

  18. 18.

    J. Czub and H. Grubmüller: Torsional elasticity and energetics of F1-ATPase. Proc. Natl. Acad. Sci. USA 108, 7408–7413 (2011).

    Article  Google Scholar 

  19. 19.

    W. Jiang and F.H. Robert: Interacting helical faces of subunits a and c in the F1F0 ATP synthase of Escherichia coli defined by disulfide cross-linking. Proc. Natl. Acad. Sci. USA 95, 6607–6612 (1998).

    CAS  Article  Google Scholar 

  20. 20.

    H. Gohlke, D. Schlieper, and G. Growth: Resolving the negative potential side (n-side) water-accessible proton pathway of F-type ATP synthase by molecular dynamics simulations. J. Biol. Chem. 287, 36536–36543 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    R.H. Fillingame and P. Ryan Steed: Half channels mediating H+ transport and the mechanism of gating in the F0 sector of Escherichia coli F1F0 ATP synthase. Biochim. Biophys. Acta 1837, 1063–1068 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    M. Sobti, C. Smits, A.S.W. Wong, R. Ishmukhametov, D. Stock, S. Sandin, and A.G. Stewart: Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states. eLife 5, e21598 (2016).

    Article  Google Scholar 

  23. 23.

    Y.-S. Lin, J.-H. Lin, and C.-C. Chang: Molecular dynamics simulations of the rotary motor F0 under external electric fields across the membrane. Biophys. J. 98, 1009–1017 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    A.D. MacKerell Jr., D. Bashford, M. Bellott, R.L. Dunbrack Jr., J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    CAS  Article  Google Scholar 

  25. 25.

    D.V.D. Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, and H.J.C. Berendsen: GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  Google Scholar 

  26. 26.

    M.J. Abraham, T. Murtola, R. Schulz, S. Palla, J.C. Smith, B. Hess, and E. Lindahl: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X 1–12, 19–25 (2015).

    Google Scholar 

  27. 27.

    B.J. Delley: An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).

    CAS  Article  Google Scholar 

  28. 28.

    B. J. Delley: From molecules to solids with the Dmol3 approach. J. Chem. Phys. 113, 7756–7764 (2000).

    CAS  Article  Google Scholar 

  29. 29.

    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais: Atoms, molecules, solids, and surfaces: application of the generalized approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    CAS  Article  Google Scholar 

  30. 30.

    M. Kobayashi, A.V. Struts, T. Fujiwara, M.F. Brown, and H. Akutsu: Fluid mechanical matching of H+-ATP synthase subunit c-ring with lipid membranes revealed by 2H solid-state NMR. Biophys. J. 94, 4339–4347 (2008).

    CAS  Article  Google Scholar 

  31. 31.

    S. Mukherjee and A. Warshel: Realistic simulations of the coupling between the protomotive force and the mechanical rotation of the F0-ATPase. Proc. Natl. Acad. Sci. USA 109, 14876–14881 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    D. Pogoryelova, A.L. Klyszejkoa, G.O. Krasnoselskaa, E.-M. Hellera, V. Leonec, J.D. Langerd, J. Voncka, D.J. Müllere, J.D. Faraldo-Gómezc, and T. Meiera: Engineering rotor ring stoichiometries in the ATP synthase. Proc. Natl. Acad. Sci. USA 109, 9676–9677 (2012).

    Google Scholar 

  33. 33.

    B.J. Murphy, N. Klusch, J. Langer, D.J. Mills, Ö Yildiz, and W. Kühlbrandt: Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1-F0 coupling. Science 364, 1155 (2019).

    Article  Google Scholar 

Download references

Acknowledgment

N.M. acknowledges support from the Grant-in-Aid for JSPS Fellows.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naoki Miyazawa.

Electronic supplementary material

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2020.8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miyazawa, N., Hakamada, M. & Mabuchi, M. Effects of nanoporous Au on ATP synthase. MRS Communications 10, 173–178 (2020). https://doi.org/10.1557/mrc.2020.8

Download citation