Skip to main content

Electronic charge transfer properties of COF-5 solutions and films with intercalated metal ions

Abstract

To investigate the manipulation of electromagnetic properties of two-dimensional materials, this effort characterizes charge transfer behavior of colloidal COF-5 (covalent organic framework) in the presence of various metal ions. A series of metal chloride compounds was introduced to COF-5 in solution and solid film phases and the interaction of the material with electromagnetic radiation was monitored across the visible region using electronic absorption spectroscopy. Notable changes were observed, quantified, and discussed for copper (II) chloride (CuCI2), chromium (III) chloride (CrCI3), and iron (III) chloride (FeCI3) with COF-5. Ligand-to-metal and metal-to-ligand charge transfer are explored as a possible mechanism for the observed electronic behaviors.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

References

  1. 1.

    L. Wang, Z. Wei, M. Mao, H. Wang, Y. Li, and J. Ma: Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Mater. 16, 434–454 (2019).

    Article  Google Scholar 

  2. 2.

    H. Tang, Q. Hu, M. Zheng, Y. Chi, X. Qin, H. Pang, and Q. Xu: MXene-2D layered electrode materials for energy storage. Prog. Nat. Sci. 28, 133–147 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Y.-H. Wang, K.-J. Huang, and X. Wu: Recent advances in transition-metal dichalcogenides based electrochemical biosensors: a review. Biosens. Bioelectron. 97, 305–316 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    M.M. Shulaker, G. Hills, N. Patil, H. Wei, H.-Y. Chen, H.-S.P. Wong, and S. Mitra: Carbon nanotube computer. Nature 501, 526–530 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    S. Sankaran, K. Deshmukh, M.B. Ahamed, and S.K. Pasha: Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Composites Part A 114, 49–71 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Y. Song, L. He, X. Zhang, F. Liu, N. Tian, Y. Tang, and J. Kong: Highly efficient electromagnetic wave absorbing metal-free and carbon-rich ceramics derived from hyperbranched polycarbosilazanes. J. Phys. Chem. C 121, 24774–24785 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    A.P. Cote, A.I. Benin, N.I. Ockwig, M. O’Keeffe, A.J. Matzger, and O.M. Yaghi: Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    S. Wan, J. Guo, J. Kim, H. Ihee, and D. Jiang: A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypropylene sheets for photocurrent generation. Angew. Chem. Int. Ed. 48, 5439–5442 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    R.-L. Wang, D.-P. Li, L.-J. Wang, X. Zhang, Z.-Y. Zhou, J.-L. Mu, and Z.-M.S. Su: The preparation of new covalent organic framework embedded with silver nanoparticles and its applications in degradation of organic pollutants from waste water. Dalton Trans. 48, 1051–1059 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    X. Ding, J. Guo, X. Feng, Y. Honsho, J. Guo, S. Seki, P. Maitarad, A. Saeki, S. Nagase, and D. Jiang: Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew. Chem. Int. Ed. 50, 1289–1293 (2010).

    Article  Google Scholar 

  11. 11.

    E.L. Spitler and W.R. Dichtel: Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2, 672–677 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    H. Yang, S. Zhang, L. Han, Z. Zhang, Z. Xue, J. Gao, Y. Li, C. Huang, Y. Yi, H. Liu, and Y. Li: High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces 8, 5366–5375 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    L. Ascherl, E.W. Evans, M. Hennemann, D. Di Nuzzo, A.G. Hufnagel, M. Beetz, R.H. Friend, T. Clark, T. Bein, and F. Auras: Solvatochromic covalent organic frameworks. Nat. Commun. 9, 3802 (2018).

    Article  Google Scholar 

  14. 14.

    S. Dalapati, E. Jin, M. Addicoat, T. Heine, and D. Jiang: Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 138, 5797–5800 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    M.S. Dresselhaus and G. Dresselhaus: Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, and S. Dou: Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4, 1700146, 1–14 (2017).

    CAS  Google Scholar 

  17. 17.

    B.J. Smith, L.R. Parent, A.C. Overholts, P.A. Beaucage, R.P. Bisbey, A.D. Chavez, N. Hwang, C. Park, A.M. Evans, N.C. Gianneschi, and W.R. Dichtel: Colloidal covalent organic frameworks. ACS Cent. Sci. 3, 58–65 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    B. Lukose, A. Kuc, J. Frenzel, and T. Heine: On the reticular construction concept of covalent organic frameworks. Beilstein J. Nanotechnol. 1, 60–70 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Zhou, Z. Wang, P. Yang, X. Zu, and F. Gao: Electronic and optical properties of two-dimensional covalent organic frameworks. J. Mater. Chem. 22, 16964–16970 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Z. Xu: Mechanics of metal-catecholate complexes: the roles of coordination state and metal types. Sci. Rep. 3, 2914 (2013).

    Article  Google Scholar 

  21. 21.

    D. Shriver, and P. Atkins: Inorganic Chemistry. 3rd ed. (W. H. Freeman and Company, New York, NY, 1999).

    Google Scholar 

  22. 22.

    D.M. Manuta, and A.J. Lees: Solvatochromism of the metal to ligand charge-transfer transitions of zerovalent tungsten carbonyl complexes. Inorg. Chem. 25, 3212–3218 (1986).

    CAS  Article  Google Scholar 

  23. 23.

    B. Carlotti, R. Flamini, I. Kikas, U. Mazzucato, and A. Spalletti: Intramolecular charge transfer, solvatochromism and hyperpolarizability of compounds bearing ethenylene or ethynylene bridges. Chem. Phys. 407, 9–19 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    OpenStax College: Chemistry (OpenStax, Houston, TX, 2015).

    Google Scholar 

  25. 25.

    J.K. Utterback, M.B. Wilker, D.W. Mulder, P.W. King, J.D. Eaves, and G. Dukovic: Quantum efficiency of charge transfer competing against nonexponential processes: the case of electron transfer from CdS nanorods to hydrogenase. J. Phys. Chem. 123, 886–896 (2019).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding for this effort through the Naval Surface Warfare Center–Dahlgren Division (NSWCDD) In-House Laboratory Independent Research (ILIR) program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael S. Lowry.

Electronic supplementary material

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2020.7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Owen, W.S., Bible, M.S., Dohmeier, E.F. et al. Electronic charge transfer properties of COF-5 solutions and films with intercalated metal ions. MRS Communications 10, 91–97 (2020). https://doi.org/10.1557/mrc.2020.7

Download citation