Skip to main content

Insensitivity of the extent of surface reduction of ceria on termination: comparison of (001), (110), and (111) faces

Abstract

The enhanced reducibility of the surface of ceria relative to the bulk has long been established. Several studies also show that ceria nanoparticles with different facets exhibit different catalytic activities. Despite consensus that the activity is correlated with the surface Ce3+ concentration, experimental measurements of this concentration as a function of termination are lacking. Here, X-ray absorption near-edge spectroscopy (XANES) is used to quantify the Ce3+ concentration in films with (001), (110), and (111) surface terminations under reaction relevant conditions. While an enhanced Ce3+ concentration is found at the surfaces, it is surprisingly insensitive to film orientation.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    A. Trovarelli: Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. 38, 439–520 (1996).

    CAS  Article  Google Scholar 

  2. 2.

    Y.S. Yang, Z. Mao, W.J. Huang, L.H. Liu, J.L. Li, J.L. Li, and Q.Z. Wu: Redox enzyme-mimicking activities of CeO2 nanostructures: intrinsic influence of exposed facets. Sci. Rep. 6 no. 35344 (7 pp) (2016).

    Google Scholar 

  3. 3.

    T.X.T. Sayle, S.C. Parker, and C.R.A. Catlow: The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide. Surf. Sci. 316, 329–336 (1994).

    CAS  Article  Google Scholar 

  4. 4.

    Z. Zhao, M. Uddi, N. Tsvetkov, B. Yildiz, and A.F. Ghoniem: Redox kinetics study of fuel reduced ceria for chemical-looping water splitting. J. Phys. Chem. C 120, 16271–16289 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    W. Yuan, Q. Ma, Y. Liang, C. Sun, K.V.L.V. Narayanachari, M.J. Bedzyk, I. Takeuchi, and S.M. Haile: Unexpected trends in the enhanced Ce3+ surface concentration in ceria–zirconia catalyst materials. J. Mater. Chem. A 8, 9850–9858 (2020).

    CAS  Article  Google Scholar 

  6. 6.

    D.R. Mullins: The surface chemistry of cerium oxide. Surf. Sci. Rep. 70, 42–85 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    A. Trovarelli and J. Llorca: Ceria catalysts at nanoscale: how do crystal shapes shape catalysis? ACS Catal. 7, 4716–4735 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    Z.A. Qiao, Z.L. Wu, and S. Dai: Shape-controlled ceria-based nanostructures for catalysis applications. ChemSusChem 6, 1821–1833 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    D.S. Zhang, X.J. Du, L.Y. Shi, and R.H. Gao: Shape-controlled synthesis and catalytic application of ceria nanomaterials. Dalton Trans. 41, 14455–14475 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    C.W. Sun, H. Li, and L.Q. Chen: Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci. 5, 8475–8505 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    J. Paier, C. Penschke, and J. Sauer: Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem. Rev. 113, 3949–3985 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    M. Nolan, S.C. Parker, and G.W. Watson: The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci. 595, 223–232 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    Z. Liu, X.J. Li, M. Mayyas, P. Koshy, J.N. Hart, and C.C. Sorrell: Growth mechanism of ceria nanorods by precipitation at room temperature and morphology-dependent photocatalytic performance. CrystEngComm 19, 4766–4776 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Z. Liu, X.J. Li, M. Mayyas, P. Koshy, J.N. Hart, and C.C. Sorrell: Growth mechanism of ceria nanorods by precipitation at room temperature and morphology-dependent photocatalytic performance (vol 19, pg 4766, 2017). CrystEngComm. 19, 5492–5492 (2017).

    CAS  Article  Google Scholar 

  15. 15.

    E. Aneggi, D. Wiater, C. de Leitenburg, J. Llorca, and A. Trovarelli: Shape-dependent activity of ceria in soot combustion. ACS Catal. 4, 172–181 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    C.S. Pan, D.S. Zhang, L.Y. Shi, and J.H. Fang: Template-free synthesis, controlled conversion, and CO oxidation properties of CeO2 nanorods, nanotubes, nanowires, and nanocubes. Eur. J. Inorg. Chem. 15, 2429–2436 (2008).

    Article  Google Scholar 

  17. 17.

    Z.L. Wang and X.D. Feng: Polyhedral shapes of CeO2 nanoparticles. J. Phys. Chem. B 107, 13563–13566 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    S.L. Chen, T. Cao, Y.X. Gao, D. Li, F. Xiong, and W.X. Huang: Probing surface structures of CeO2, TiO2, and Cu2O nanocrystals with CO and CO2 chemisorption. J. Phys. Chem. C 120, 21472–21485 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Z. Liu, X.J. Li, M. Mayyas, P. Koshy, J.N. Hart, and C.C. Sorrell: Planar-dependent oxygen vacancy concentrations in photocatalytic CeO2 nanoparticles. CrystEngComm 20, 204–212 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    X. Wang, Z.Y. Jiang, B.J. Zheng, Z.X. Xie, and L.S. Zheng: Synthesis and shape-dependent catalytic properties of CeO2 nanocubes and truncated octahedra. CrystEngComm 14, 7579–7582 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Z.L. Wu, M.J. Li, and S.H. Overbury: On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J. Catal. 285, 61–73 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    S. Carrettin, P. Concepcion, A. Corma, J.M.L. Nieto, and V.F. Puntes: Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed. 43, 2538–2540 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    S. Turner, S. Lazar, B. Freitag, R. Egoavil, J. Verbeeck, S. Put, Y. Strauven, and G. Van Tendeloo: High resolution mapping of surface reduction in ceria nanoparticles. Nanoscale 3, 3385–3390 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    V.K. Paidi, L. Savereide, D.J. Childers, J.M. Notestein, C.A. Roberts, and J. van Lierop: Predicting NOx catalysis by quantifying Ce3+ from surface and lattice oxygen. ACS Appl. Mater. Interfaces 9, 30670–30678 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Z.L. Wu, M.J. Li, J. Howe, H.M. Meyer, and S.H. Overbury: Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 26, 16595–16606 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    W.C. Chueh, Y. Hao, W. Jung, and S.M. Haile: High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes. Nat. Mater. 11, 155–161 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    W.C. Chueh and S.M. Haile: Electrochemical studies of capacitance in cerium oxide thin films and its relationship to anionic and electronic defect densities. Phys. Chem. Chem. Phys. 11, 8144–8148 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    R.J. Panlener, R.N. Blumenthal, and J.E. Garnier: A thermodynamic study of nonstoichiometric cerium dioxide. J. Phys. Chem. Solids 36, 1213–1222 (1975).

    CAS  Article  Google Scholar 

  29. 29.

    G.S. Henderson, F.M.F. de Groot, and B.J.A. Moulton: X-ray Absorption Near-Edge Structure (XANES) Spectroscopy Reviews in Mineralogy and Geochemistry 78, 75–138 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    H.J. Seifert, P. Nerikar, and H.L. Lukas: Thermodynamic assessment of the Ce-O system in solid state from 60 to 67 mol% O. Int. J. Mater. Res. 97, 744–752 (2006).

    CAS  Google Scholar 

  31. 31.

    Z.L.A. Feng, F. El Gabaly, X.F. Ye, Z.X. Shen, and W.C. Chueh: Fast vacancy-mediated oxygen ion incorporation across the ceria-gas electrochemical interface. Nat. Commun. 5 no. 4374 (9 pp) (2014).

    Google Scholar 

Download references

Acknowledgments

This work was supported primarily by NSF DMR-1505103. The XANES experiments were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by Northwestern University, E.I. DuPont de Nemours & Co., and The Dow Chemical Company. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Part of this work made use of the Pulsed Laser Deposition Shared Facility and the X-ray Diffraction Facility at the Materials Research Center at Northwestern University, supported by the National Science Foundation MRSEC program (DMR-1720139) and the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sossina M. Haile.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, W., Haile, S.M. Insensitivity of the extent of surface reduction of ceria on termination: comparison of (001), (110), and (111) faces. MRS Communications 10, 636–641 (2020). https://doi.org/10.1557/mrc.2020.73

Download citation