Skip to main content
Log in

Yttria-stabilized barium zirconate surface reactivity at elevated temperatures

  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Material changes in yttrium-doped barium zirconate, BaZr0.8Y0.2O3–x, were studied using in situ Raman spectroscopy and ex situ x-ray photoelectron spectroscopy analysis. During in situ Raman analysis, samples were heated to temperatures of 300–600 °C and exposed to both dry and humidified H2 atmospheres. At the lower temperatures (300–450 °C), a new vibrational peak appears in the Raman spectra during exposure to humidified H2. The appearance of this feature is reversible, dependent on previous sample history, and possibly results from new, secondary phase formation or lattice distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. E. Fabbri, L. Bi, D. Pergolesi, and E. Traversa: Towards the next generation of solid oxide fuel cells operating below 600°C with chemically stable proton-conducting electrolytes. Adv. Mater. 24, 195–208 (2012).

    Article  CAS  Google Scholar 

  2. C. Duan, R.J. Kee, H. Zhu, C. Karakaya, Y. Chen, S. Ricote, A. Jarry, E.J. Crumlin, D. Hook, R. Braun, N.P. Sullivan, and R. O'Hayre: Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 557, 217–222 (2018).

    Article  CAS  Google Scholar 

  3. D.S. Yun, J. Kim, S.-J. Kim, J.-H. Lee, J.-N. Kim, H.C. Yoon, J.H. Yu, M. Kwak, H. Yoon, Y. Cho, and C.-Y. Yoo: Structural and electrochemical properties of dense yttria-doped barium zirconate prepared by solid-state reactive sintering. Energies 11, 3083 (2018).

    Article  CAS  Google Scholar 

  4. B. He, D. Ding, Y. Ling, L. Zhao, and J. Cheng: Fabrication and evaluation of stable micro tubular solid oxide fuel cells with BZCY-BZY Bi-layer proton conducting electrolytes. Int. J. Hydrog. Energy 39, 19087–19092 (2014).

    Article  CAS  Google Scholar 

  5. K. Bae, D.Y. Jang, H.J. Choi, D. Kim, J. Hong, B.-K. Kim, J.-H. Lee, J.-W. Son, and J.H. Shim: Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nat. Commun. 8, 1–9 (2017).

    Article  Google Scholar 

  6. R. Wang, G. Lau, D. Ding, T. Zhu, and M.C. Tucker: Approaches for co-sintering metal-supported proton-conducting solid oxide cells with Ba(Zr,Ce,Y,Yb)O3-δ electrolyte. Int. J. Hydrog. Energy. 44, 13768–13776 (2019).

    Article  CAS  Google Scholar 

  7. F. Lefebvre-Joud, G. Gauthier, and J. Mougin: Current status of proton-conducting solid oxide fuel cells development. J. Appl. Electrochem. 39, 535–543 (2009).

    Article  CAS  Google Scholar 

  8. C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, and R. O'Hayre: Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349, 1321–1326 (2015).

    Article  CAS  Google Scholar 

  9. R.R. Chien, C.-S. Tu, V.H. Schmidt, S.-C. Lee, and C.-C. Huang: Synthesis and characterization of proton-conducting Ba(Zr0.8−xCexY0.2)O2.9 ceramics. Solid State Ion. 181, 1251–1257 (2010).

    Article  CAS  Google Scholar 

  10. A. Dubois, S. Ricote, and R.J. Braun: Comparing the expected stack cost of next generation intermediate temperature protonic ceramic fuel cells with solid oxide fuel cell technology. ECS Trans. 78, 1963–1972 (2017).

    Article  CAS  Google Scholar 

  11. N.S. Patki, J.D. Way, and S. Ricote: High performance fuel electrodes fabricated by electroless plating of copper on BaZr0.8Ce0.1Y0.1O3-δ proton-conducting ceramic. J. Power Sources 365, 399–407 (2017).

    Article  CAS  Google Scholar 

  12. A. Slodczyk, O. Zaafrani, M.D. Sharp, J.A. Kilner, B. Dabrowski, O. Lacroix, and P. Colomban: Testing the chemical/structural stability of proton conducting perovskite ceramic membranes by in situ/ex situ autoclave raman microscopy. Membranes 3, 311–330 (2013).

    Article  Google Scholar 

  13. F. Giannici, M. Shirpour, A. Longo, A. Martorana, R. Merkle, and J. Maier: Long-range and short-range structure of proton-conducting Y:BaZrO3. Chem. Mater. 23, 2994–3002 (2011).

    Article  CAS  Google Scholar 

  14. D. Medvedev, J. Lyagaeva, S. Plaksin, A. Demin, and P. Tsiakaras: Sulfur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials. J. Power Sources 273, 716–723 (2015).

    Article  CAS  Google Scholar 

  15. C.-Y. Yoo, D.S. Yun, J.H. Joo, and J.H. Yu: The effects of no addition on the structure and transport properties of proton conducting BaZr0.8Y0.2O3−δ. J. Alloys Compd. 621, 263–267 (2015).

    Article  CAS  Google Scholar 

  16. M. Kubicek, Z. Cai, W. Ma, B. Yildiz, H. Hutter, and J. Fleig: Tensile lattice strain accelerates oxygen surface exchange and diffusion in La1–xSrxCoO3−δ thin films. ACS Nano 7, 3276–3286 (2013).

    Article  CAS  Google Scholar 

  17. M. Riva, M. Kubicek, X. Hao, G. Franceschi, S. Gerhold, M. Schmid, H. Hutter, J. Fleig, C. Franchini, B. Yildiz, and U. Diebold: Influence of surface atomic structure demonstrated on oxygen incorporation mechanism at a model perovskite oxide. Nat. Commun. 9, 1–9 (2018).

    Article  CAS  Google Scholar 

  18. M.B. Pomfret, C. Stoltz, B. Varughese, and R.A. Walker: Structural and compositional characterization of yttria-stabilized zirconia: evidence of surface-stabilized, low-valence metal species. Anal. Chem. 77, 1791–1795 (2005).

    Article  CAS  Google Scholar 

  19. T. Götsch, E. Bertel, A. Menzel, M. Stöger-Pollach, and S. Penner: Spectroscopic investigation of the electronic structure of yttria-stabilized zirconia. Phys. Rev. Mater. 2, 035801–035809 (2018).

    Article  Google Scholar 

  20. C.-S. Tu, R.R. Chien, V.H. Schmidt, S.C. Lee, and C.-C. Huang: Temperature-dependent structures of proton-conducting Ba(Zr0.8–xCexY0.2)O2.9 ceramics by Raman scattering and X-ray diffraction. J. Phys. Condens. Matter 24, 155403–155410 (2012).

    Article  Google Scholar 

  21. K.S. Blinn: Investigation of electrode surfaces in solid oxide fuel cells using Raman mapping and enhanced spectroscopy techniques. Ph.D. Dissertation, Georgia Institute of Technology, 2012.

    Google Scholar 

  22. X. Li, K. Blinn, D. Chen, and M. Liu: In situ and surface-enhanced Raman spectroscopy study of electrode materials in solid oxide fuel cells. Electrochem. Energy Rev. 1, 433–459 (2018).

    Article  CAS  Google Scholar 

  23. R.L. McCreery: Raman Spectroscopy for Chemical Analysis. (John Wiley & Sons, New York, 2000).

    Book  Google Scholar 

  24. A. Slodczyk, P. Colomban, S. Willemin, O. Lacroix, and B. Sala: Indirect Raman identification of the proton insertion in the high-temperature [Ba/Sr][Zr/Ti]O3-modified perovskite protonic conductors. J. Raman Spectrosc. 40, 513–521 (2009).

    Article  CAS  Google Scholar 

  25. A. Slodczyk, P. Colomban, D. Lamago, M.-H. Limage, F. Romain, S. Willemin, and B. Sala: Phase transitions in the H+-conducting perovskite ceramics by the quasi-elastic neutron and high-pressure Raman scattering. Ionics 14, 215–222 (2008).

    Article  CAS  Google Scholar 

  26. A.A. Sirenko, I.A. Akimov, J.R. Fox, A.M. Clark, H.-C. Li, W. Si, and X.X. Xi: Observation of the first-order Raman scattering in SrTiO3 Thin Films. Phys. Rev. Lett. 82, 4500–4503 (1999).

    Article  CAS  Google Scholar 

  27. NIST X-ray Photoelectron Spectroscopy (XPS): Database Main Search Menu. https://srdata.nist.gov/xps/main_search_menu.aspx (accessed April 2, 2020).

    Google Scholar 

  28. CRC: CRC Handbook of Chemistry and Physics. 72nd Edition (CRC Press, Ann Arbor, MI, 1991), pp. 5.16–5.59.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the National Science Foundation (CHE-1710695). R.A.W. acknowledges additional instrumentation support from the Office of Naval Research (N00014-17-2808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Walker.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.38

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welander, M.M., Goettlich, D.J., Henning, T.J. et al. Yttria-stabilized barium zirconate surface reactivity at elevated temperatures. MRS Communications 10, 455–460 (2020). https://doi.org/10.1557/mrc.2020.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.43

Navigation