Skip to main content
Log in

Light angle dependence of photothermal properties in oxide and porphyrin thin films for energy-efficient window applications

  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The photothermal experiments on the incident light angle dependence are carried out using simulated solar light on thin films of both iron oxides (Fe3O4 and Fe3O4@Cu2-xS) and porphyrin compounds (chlorophyll and chlorophyllin). Fe3O4 and Fe3O4@Cu2-xS are synthesized using various solution methods that produce mono-dispersed nanoparticles on the order of 10 nm. Chlorophyll is extracted from fresh spinach and chlorophyllin sodium copper is a commercial product. These photothermal (PT) materials are dispersed in polymethyl methacrylate (PMMA) solutions and deposited on glass substrates via spin coating that result in clear and transparent thin films. The iron-oxide based thin films show distinctive absorption spectra; Fe3O4 exhibits a strong peak near UV and gradually decreases into the visible and NIR regions; the absorption of Fe3O4@Cu2-xS is similar in the UV region but shows a broad absorption in the NIR region. Both chlorophyll and chlorophyllin are characterized with absorption peaks near UV and NIR showing a “U”-shaped spectrum, ideally required for efficient solar harvest and high transparency in energy-efficient single-pane window applications. Upon coating of the transparent PT films on the window inner surfaces, solar irradiation induces the photothermal effect, consequently raising the film temperature. In this fashion, the thermal loss through the window can be significantly lowered by reducing the temperature difference between the window inner surface and the room interior, based on a new concept of so-called optical thermal insulation (OTI) without any intervention medium, such as air/argon, as required in the glazing technologies. Single-panes are therefore possible to replace double- or triple panes. As OTI is inevitably affected by seasonal and daily sunlight changes, an incident light angle dependence of the photothermal effect is crucial in both thin film and window designs. It is found that the heating curves reach their maxima at small angles of incidence while the photothermal effect is considerably reduced at large angles. This angle dependence is well explained by light reflection by the thin film surface, however, deviated from what is predicted by the Fresnel's law, attributable to non-ideal surfaces of the substrates. The angle dependence data provide an important reference for OTI that window exposure to the sun is greater at winter solstice while that is considerably reduced in the summer. This conclusion indicates much enhanced solar harvesting and heat conversion via optically insulated windows in the winter season, resulting in much lower U-factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. EIA: Consumption & Efficiency. U.S. Energy Information Administration (2015). https://www.eia.gov/consumption/ (accessed March 10, 2020).

    Google Scholar 

  2. A.A.F. Husain, W.Z.W. Hasan, S. Shafie, M.N. Hamidon, and S.S. Pandey: A review of transparent solar photovoltaic technologies. Renew. Sust. Energy Rev. 94, 779–791 (2018).

    Article  CAS  Google Scholar 

  3. S.Y. Chang, P. Cheng, G. Li, and Y. Yang: Transparent polymer photovoltaics for solar energy harvesting and beyond. Joule 2, 1039–1054 (2018).

    Article  CAS  Google Scholar 

  4. D. Shi, M.E. Sadat, A.W. Dunn, and D.B. Mast: Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale 7, 8209–8232 (2015).

    Article  CAS  Google Scholar 

  5. I. Sartori, A. Napolitano, and K. Voss: Net zero energy buildings: a consistent definition framework. Energy Build. 48, 220–232 (2012).

    Article  Google Scholar 

  6. L. Wang, J. Gwilliam, and P. Jones: Case study of zero energy house design in UK. Energy Build 41, 1215–1222 (2009).

    Article  Google Scholar 

  7. S. Attia, E. Gratia, A. De Herde, and J.L.M. Hensen: Simulation-based decision support tool for early stages of zero-energy building design. Energy Build 49, 2–15 (2012).

    Article  Google Scholar 

  8. Y. Zhao, M.E. Sadat, A. Dunn, H. Xu, C.H. Chen, W. Nakasuga, R.C. Ewing, and D. Shi: Photothermal effect on Fe3O4 nanoparticles irradiated by white-light for energy-efficient window applications. Sol. Energy Mater. Sol. Cells 161, 247–254 (2017).

    Article  CAS  Google Scholar 

  9. Y. Zhao, A.W. Dunn, and D. Shi: Effective reduction of building heat loss without insulation materials via the photothermal effect of a chlorophyll thin film coated Green Window. MRS Commun. 9, 675–681 (2019).

    Article  CAS  Google Scholar 

  10. J. Lin, Y. Zhao, and D. Shi: Optical thermal insulation via the photothermal effects of Fe3O4 and Fe3O4@Cu2-xS thin films for energy-efficient single-pane windows. MRS Commun. 10, 155–163 (2020).

    Article  CAS  Google Scholar 

  11. J. Wang and D. Shi: Spectral selective and photothermal nano structured thin films for energy efficient windows. Appl. Energy 208, 83–96 (2017).

    Article  CAS  Google Scholar 

  12. J.S. Choi, B.G. Choi, J.H. Kim, S.T. Ryu, C.T. Rim, and Y.S. Kim: New curved reflectors for significantly enhanced solar power generation in four seasons. Energies 12, 4602 (2019).

    Article  Google Scholar 

  13. National Fenestration Rating Council: Procedure for Determining Fenestration Product U-factors (2013). https://www.nfrccommunity.org/store/ViewProduct.aspx?id=1380591 (accessed March 10, 2020).

    Google Scholar 

  14. E. Energy Star: ENERGY STAR Program Requirements for Residential Windows, Doors, and Skylights. https://www.energystar.gov/sites/default/files/Windows_Doors_and_Skylights_Program_Requirements%20v6.pdf (accessed March 12, 2020).

    Google Scholar 

  15. Y. Zhao, J. Lin, D.M. Kundrat, M. Bonmarin, J. Krupczak Jr., S.V. Thomas, M. Lyu, and D. Shi: Photonically-activated molecular excitations for thermal energy conversion in porphyrinic compounds. J. Phys. Chem. C 124, 1575–1584 (2020).

    Article  CAS  Google Scholar 

  16. Solar Energy: http://www.inforse.org/europe/dieret/Solar/solar.html (accessed March 13, 2020).

  17. Working with Solar Fabircs: https://ecofabrix.com/fabric-guide/ (accessed March 07, 2020).

  18. Y.M. Chen, C.H. Lee, and H.C. Wu: Calculation of the optimum installation angle for fixed solar-cell panels based on the genetic algorithm and the simulated-annealing method. IEEE Trans. Energy Convers 20, 467–473 (2005).

    Article  Google Scholar 

  19. M. Born, E. Wolf, A.B. Bhatia, P.C. Clemmow, D. Gabor, A.R. Stokes, A.M. Tayler, P.A. Wayman, and W.L. Wilcock: Principles of Optics. 7th ed. (Cambridge University Press, England, 1999).

    Book  Google Scholar 

  20. The Carbon Neutral Design Project, Society of Building Science Educators, American Institute of Architects: Carbon Neutral Design Strategies (2012). http://www.tboake.com/carbon-aia/strategies1a.html (accessed March 11, 2020).

    Google Scholar 

  21. Solar Geometry: http://mypages.iit.edu/~maslanka/SolarGeo.pdf (accessed March 13).

  22. W.B. Stine and M. Geyer: Power from the Sun (eBook, 2001). http://www.powerfromthesun.net/book.html (accessed March 11, 2020).

    Google Scholar 

  23. A. El-Sebaii and A.E.M. Khallaf: Mathematical modeling and experimental validation for square pyramid solar still. Environ. Sci. Pollut. Res. Published online 11 Jan 2020. doi:10.1007/s11356-019-07587-5

  24. M. Khan: Solar still distillate productivity enhancement by using reflector and design optimization experimental investigation of nucleate pool boiling heat transfer enhancement of TiO2-water based nanofluids view project. Innov. Ener. Res. 8, 222 (2019).

    Google Scholar 

  25. M.J. Yun, Y.H. Sim, S.I. Cha, S.H. Seo, and D.Y. Lee: 3-Dimensional dye sensitized solar cell sub-module with oblique angled cell array for enhanced power and energy density output utilizing non-linear relation in cosine law of light incident angle. Sol. Energy 177, 355–363 (2019).

    Article  Google Scholar 

  26. Y.Q. Liu, D. Wei, H.L. Cui, and D.Q. Wang: Photovoltaic effect related to methylammonium cation orientation and carrier transport properties in high-performance perovskite solar cells. ACS Appl. Mater. Interfaces 12, 3563–3571 (2020).

    Article  CAS  Google Scholar 

  27. J.X. Liu, Q. Tian, J. Hu, Y. Zhu, R. Zou, and Z. Chen: Sub-10 nm Fe3O4@ Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy. J. Am. Chem. Soc. 135, 8571–8577 (2013).

    Article  CAS  Google Scholar 

  28. S. Upadhyay, K. Parekh, and B. Pandey: Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles. J. Alloys Compd. 678, 478–485 (2016).

    Article  CAS  Google Scholar 

  29. S. Ali, S.A. Khan, J. Eastoe, S.R. Hussaini, M.A. Morsy, and Z.H. Yamani: Synthesis, characterization, and relaxometry studies of hydrophilic and hydrophobic superparamagnetic Fe3O4 nanoparticles for oil reservoir applications. Colloids Surfaces A Physicochem. Eng. Asp 543, 133–143 (2018).

    Article  CAS  Google Scholar 

  30. K. Nee Koo, A. Fauzi Ismail, M. Hafiz Dzarfan Othman, M.A. Rahman, and T. Zhong Sheng: Preparation and characterization of superparamagnetic magnetite (Fe3O4) nanoparticles: a short review. Malays. J. Fundam. Appl. Sci. 15, 23–31 (2019).

    Article  Google Scholar 

  31. A. Nagaraja, Y.M. Puttaiahgowda, A. Kulal, A.M. Parambil, and T. Varadavenkatesan: Synthesis, characterization, and fabrication of hydrophilic antimicrobial polymer thin film coatings. Macromol. Res. 27, 301–309 (2019).

    Article  CAS  Google Scholar 

  32. W.R. Wu, C.J. Su, W.T. Chuang, Y.C. Huang, P.W. Yang, P.C. Lin, C.Y. Chen, T.Y. Yang, A.C. Su, K.H. Wei, C.M. Liu, and U.S. Jeng: Surface layering and supersaturation for top-down nanostructural development during spin coating of polymer/fullerene thin films. Adv. Energy Mater. 7, 1601842 (2017).

    Article  CAS  Google Scholar 

  33. S. Wang, X. Zhao, Y. Tong, Q. Tang, and Y. Liu: Directly spin coating a low-viscosity organic semiconductor solution onto hydrophobic surfaces: toward high-performance solution-processable organic transistors. Adv. Mater. Interfaces 7, 1901950 (2020).

    Article  CAS  Google Scholar 

  34. M.V. Kelso, N.K. Mahenderkar, Q. Chen, J.Z. Tubbesing, and J.A. Switzer: Spin coating epitaxial films. Science 364, 166–169 (2019).

    CAS  Google Scholar 

  35. H. Inoue, H. Yamashita, K. Furuya, Y. Nonomura, N. Yoshioka, and S. Lib: Determination of copper(II) chlorophyllin by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 679, 99–104 (1994).

    Article  CAS  Google Scholar 

  36. E. Yuliarita and A. Zulys: Utilization of natural compounds (chlorophyll and carotene extracts) as an octane-boosting additive in gasoline. IOP Conf. Ser. Mater. Sci. Eng. 496, 012048 (2019).

  37. B. Zhang, Y. Shan, and K. Chen: A facile approach to fabricate of photothermal functional Fe3O4@CuS microspheres. Mater. Chem. Phys. 193, 82–88 (2017).

    Article  CAS  Google Scholar 

  38. J. Singh: Optical Properties of Condensed Matter and Applications (Wiley, Chichester, UK, 2006).

    Book  Google Scholar 

  39. R.C. Rai: Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films. J. Appl. Phys. 113, 153508 (2013).

    Article  CAS  Google Scholar 

  40. C. Boxall, G. Kelsall, and Z. Zhang: Photoelectrophoresis of colloidal iron oxides: Part 2. - Magnetite (Fe3O4). J. Chem. Soc. - Faraday Trans. 92, 791–802 (1996).

    Article  CAS  Google Scholar 

  41. W.F.J. Fontijn, P.J. van der Zaag, L.F. Feiner, R. Metselaar, and M.A.C. Devillers: A consistent interpretation of the magneto-optical spectra of spinel type ferrites. J. Appl. Phys. 85, 5100–5105 (1999).

    Article  CAS  Google Scholar 

  42. K.R. Nemade, and S.A. Waghuley: Band gap engineering of CuS nanoparticles for artificial photosynthesis. Mater. Sci. Semicond. Process 39, 781–785 (2015).

    Article  CAS  Google Scholar 

  43. D. Miyazaki: Fresnel Equations (2014). https://link.springer.com/content/pdf/10.1007%2F978-0-387-31439-6_569.pdf (accessed March 11).

    Book  Google Scholar 

  44. E. Hecht: Optics. 3rd ed. (Addison-Wesley Longman, Inc., Boston, MA, 1998).

    Google Scholar 

  45. A.A. Maradudin and E.R. Méndez: Light scattering from randomly rough surfaces. Sci. Prog. 90, 161–221 (2007).

    Article  CAS  Google Scholar 

  46. D. Nolan, W. Senaratne, D. Baker, and L. Liu: Optical Scattering from Nanostructured Glass Surfaces. Int. J. Appl. Glas. Sci. 6, 345–355 (2015).

    Article  CAS  Google Scholar 

  47. D.G. Stavenga: Thin film and multilayer optics cause structural colors of many insects and birds. Mater. Today: Proc. 1, 109–121 (2014).

    Google Scholar 

  48. G.A. Atkinson and E.R. Hancock: Shape estimation using polarization and shading from two views. In IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE, 29, Piscataway, New Jersey, US, 2007), pp. 2001–2017.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by National Science Foundation CMMI-1635089. We would like to thank Dr. Andrew J. Steckl for the Perkin-Elmer spectrophotometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglu Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, M., Lin, J., Krupczak, J. et al. Light angle dependence of photothermal properties in oxide and porphyrin thin films for energy-efficient window applications. MRS Communications 10, 439–448 (2020). https://doi.org/10.1557/mrc.2020.39

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.39

Navigation