Skip to main content
Log in

Electrochemical molecularly imprinted polymers in microelectrode devices

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This work demonstrated the possibility to integrate electrochemical molecularly imprinted polymers (e-MIPs) on microelectrodes to detect organic pollutants. e-MIPs are a cross-linked polymer with specific target binding cavities with a redox tracer inside. e-MIPs were obtained by precipitation copolymerization of ferrocenylmethyl methacrylate as a functional monomer and a redox tracer with ethylene glycol dimethacrylate as a cross-linker and bisphenol A as a target molecule. FTIR and elemental analysis confirmed the presence of ferrocene inside the polymers. Nitrogen adsorption/desorption experiments and binding isotherms demonstrated the presence of binding cavities inside the e-MIP. The electrochemical properties of the e-MIP were characterized in organic/aqueous media before their patterned on microelectrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table I
Figure 2
Figure 3

Similar content being viewed by others

References

  1. K. Haupt and K. Mosbach: Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 100, 2495–2504 (2000).

    Article  CAS  Google Scholar 

  2. L. Ye and K. Haupt: Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Anal. Bioanal. Chem. 378, 1887–1897 (2004).

    Article  CAS  Google Scholar 

  3. L. Uzun and A.P.F. Turner: Molecularly-imprinted polymer sensors: realising their potential. Biosens. Bioelectron. 76, 131–144 (2016).

    Article  CAS  Google Scholar 

  4. M.C. Blanco-López, M.J. Lobo-Castañón, A.J. Miranda-Ordieres, and P. Tuñón-Blanco: Electrochemical sensors based on molecularly imprinted polymers. TrAC Trends Anal. Chem. 23, 36–48 (2004).

    Article  Google Scholar 

  5. S.A. Piletsky and A.P.F. Turner: Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis 14, 317–323 (2002).

    Article  CAS  Google Scholar 

  6. F. Canfarotta, R. Rapini, and S. Piletsky: Recent advances in electrochemical sensors based on chiral and nano-sized imprinted polymers. Curr. Opin. Electrochem. 7, 146–152 (2018).

    Article  CAS  Google Scholar 

  7. C. Malitesta, E. Mazzotta, R.A. Picca, A. Poma, I. Chianella, and S.A. Piletsky: MIP sensors–the electrochemical approach. Anal. Bioanal. Chem. 402, 1827–1846 (2012).

    Article  CAS  Google Scholar 

  8. P.S. Sharma, A. Pietrzyk-Le, F. D’Souza, and W. Kutner: Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal. Bioanal. Chem. 402, 3177–3204 (2012).

    Article  CAS  Google Scholar 

  9. P.S. Sharma, A. Wojnarowicz, M. Sosnowska, T. Benincori, K. Noworyta, F. D’Souza, and W. Kutner: Potentiometric chemosensor for neopterin, a cancer biomarker, using an electrochemically synthesized molecularly imprinted polymer as the recognition unit. Biosens. Bioelectron 77, 565–572 (2016).

    Article  CAS  Google Scholar 

  10. C. Branger, H. Brisset, and D. Udomsap: University of Toulon. French Patent. FR 1000175817. 21/12/2012. PCT/IB2013/ 061196 - 20/12/2013, 2012. US Patent 20,150,344,607, 2015.

    Google Scholar 

  11. D. Udomsap, C. Branger, G. Culioli, P. Dollet, and H. Brisset: A versatile electrochemical sensing receptor based on a molecularly imprinted polymer. Chem. Commun. 50, 7488–7491 (2014).

    Article  CAS  Google Scholar 

  12. D. Udomsap, H. Brisset, G. Culioli, P. Dollet, K. Laatikainen, H. Siren, and C. Branger: Electrochemical molecularly imprinted polymers as material for pollutant detection. Mater. Today Commun. 17, 458–465 (2018).

    Article  CAS  Google Scholar 

  13. V. Mba Ekomo, C. Branger, R. Bikanga, A.-M. Florea, G. Istamboulie, C. Calas-Blanchard, T. Noguer, A. Sarbu, and H. Brisset: Detection of bisphenol A in aqueous medium by screen printed carbon electrodes incorporating electrochemical molecularly imprinted polymers. Biosens. Bioelectron. 112, 56–161 (2018).

    Google Scholar 

  14. V. Mba Ekomo, C. Branger, R. Bikanga, G. Istamboulie, C. Calas-Blanchard, T. Noguer, and H. Brisset: Screen printed carbon electrodes incorporating electrochemical molecularly imprinted polymers to detect pollutant. In 17th International Meeting on Chemical Sensors, 2018; pp. 219–220. doi:10.5162/IMCS2018/EC2.2.

    Google Scholar 

  15. E. Mazzotta, A. Turco, I. Chianella, A. Guerreiro, S.A. Piletsky, and C. Malitesta: Solid-phase synthesis of electroactive nanoparticles of molecularly imprinted polymers. A novel platform for indirect electrochemical sensing applications. Sens. Actuat. B Chem. 229, 174–180 (2016).

    Article  CAS  Google Scholar 

  16. S. Rebocho, C.M. Cordas, R. Viveiros, and T. Casimiro: Development of a ferrocenyl-based MIP in supercritical carbon dioxide: towards an electrochemical sensor for bisphenol A. J. Supercrit. Fluids 135, 98–104 (2018).

    Article  CAS  Google Scholar 

  17. J. Corrales, L.A. Kristofco, W.B. Steele, B.S. Yates, C.S. Breed, E.S. Williams, and B.W. Brooks: Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation. Dose-Response 13, 1–29 (2015).

    Article  CAS  Google Scholar 

  18. V.K. Sharma, G.A.K. Anquandah, R.A. Yngard, H. Kim, J. Fekete, K. Bouzek, A.K. Ray, and D. Golovko: Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: a review on occurrence, fate, and treatment. J. Environ. Sci. Health A 44, 423–442 (2009).

    Article  CAS  Google Scholar 

  19. C. Zhang, Y. Li, C. Wang, L. Niu, and W. Cai: Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: a review. Crit. Rev. Environ. Sci. Technol. 46, 1–59 (2016).

    Article  CAS  Google Scholar 

  20. M.S. Muhamad, M.R. Salim, W.J. Lau, Z. Yusop, and T. Hadibarata: The removal of bisphenol A in water treatment plant using ultrafiltration membrane system. Water Air. Soil Pollut. 227, 250 (2016).

    Article  Google Scholar 

  21. Z. Fan, J. Hu, W. An, and M. Yang: Detection and occurrence of chlorinated byproducts of bisphenol A, nonylphenol, and estrogens in drinking water of China: comparison to the parent compounds. Environ. Sci. Technol. 47, 10841–10850 (2013).

    Article  CAS  Google Scholar 

  22. L. Padhye, H. Yao, F.T. Kung’u, and C.-H. Huang: Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Res. 51, 266–276 (2013).

    Article  Google Scholar 

  23. S. Koide and K. Yokoyama: Electrochemical characterization of an enzyme electrode based on a ferrocene-containing redox polymer. J. Electroanal. Chem. 468, 193–201 (1999).

    Article  CAS  Google Scholar 

  24. J. Wang, P.A.G. Cormack, D.C. Sherrington, and E. Khoshdel: Monodisperse molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications. Angew. Chem. Int. Ed. 42, 5336–5338 (2003).

    Article  CAS  Google Scholar 

  25. G. Socrates: Infrared and Raman Characteristic Group Frequencies–Tables and Charts. 3rd ed. (J. Wiley & Sons, New York, 2001).

    Google Scholar 

  26. O. Okay: Macroporous copolymer networks. Prog. Polym. Sci. 25, 711–779 (2000).

    Article  CAS  Google Scholar 

  27. W. Meouche, K. Laatikainen, A. Margaillan, T. Silvonen, H. Siren, T. Sainio, I. Beurroies, R. Denoyel, and C. Branger: Effect of porogen solvent on the properties of nickel ion imprinted polymer materials prepared by inverse suspension polymerization. Eur. Polym. J. 87, 124–135 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial supports from ANBG (Agence Nationale des Bourses du Gabon) and SATT Sud-Est. The authors acknowledge Dr. Paschalis Gkoupidenis for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues Brisset.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2020.29.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekomo, V.M., Branger, C., Gavrila, AM. et al. Electrochemical molecularly imprinted polymers in microelectrode devices. MRS Communications 10, 324–331 (2020). https://doi.org/10.1557/mrc.2020.29

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2020.29

Navigation