Skip to main content

Optimization of photoelectrochemical performance of Ag2S/TiO2 interface by successive ionic layer adsorption and reaction

Abstract

The narrow bandgap of Ag2S quantum dots was used to decorate TiO2 nanotube arrays (TiO2 NTAs) by the successive ionic layer adsorption and reaction (SILAR) method to enhance its photoelectrochemical performance. The micromorphology of the photoanode films prepared by the SILAR under different parameters (including different cycle times, capillary spot sample, and ultrasound-assisted) was systematically analyzed. The photoanode film Ag2S/TiO2 prepared by the SILAR under the ultrasound-assisted method shows Ag2S evenly distributed in TiO2 NTAs. At the same time, the corresponding photoabsorption range has been extended to the visible area, while the photocurrent density and photoconversion efficiency have been increased to ~1.8 mA/cm2 and 0.6%, respectively.

This is a preview of subscription content, access via your institution.

Figure 1
Table I
Figure 2
Figure 3

References

  1. 1.

    W. Ning, L. Ying, T.-T. Zhang, J. Liang, and D.-A. Wang: Hydrogenated TiO2 nanotube arrays with enhanced photoelectrochemical property for photocathodic protection under visible light. Mater. Lett. 185, 81 (2016).

    Google Scholar 

  2. 2.

    Q.-Y. Wang, J.-L. Qiao, and J. Zhou: Fabrication of Ag@Ag2S core-shell nanoparticles sensitized TiO2 nanotube arrays with high photoelectrochemical properties. ECS J. Solid State Sci. Technol. 3, Q157 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    D.-W. Cao, N. Nasori, Z.-J. Wang, L.-Y. Wen, R. Xu, Y. Mi, and Y. Lei: Facile surface treatment on Cu2O photocathodes for enhancing the photoelectrochemical response. Appl. Catal. B Environ. 198, 398 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    D. Jiang, H. Yu, and H.-B. Yu: Modified g-C3N4/TiO2 nanosheets/ZnO ternary facet coupled heterojunction for photocatalytic degradation of p-toluenesulfonic acid (p-TSA) under visible light. Physica E 85, 1 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    G. Kawamura, H. Ohmi, W.-K. Tan, Z. Lockman, H. Muto, and A. Matsuda: Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells. Nanoscale Res. Lett. 10, 1 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    C.-B. Liu, C.-H. Cao, X.-B. Luo, and S.-L. Luo: Ag-bridged Ag2O nanowire network/TiO2 nanotube array p-n heterojunction as a highly efficient and stable visible light photocatalyst. J. Hazard. Mater. 285, 319 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    W.-G. Yang, Y.-H. Yu, M.B. Starr, X. Yin, Z.-D. Li, A. Kvit, S.-F. Wang, P. Zhao, and X.-D. Wang: Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core-shell nanowire photoanodes. Nano Lett. 15, 7574 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    J.-S. Zhong, Q.-Y. Wang, and Y.-F. Yu: Solvothermal preparation of Ag nanoparticles sensitized TiO2 nanotube arrays with enhanced photoelectrochemical performance. J. Alloy. Compd. 620, 168 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    A. Abbasi and J. J. Sardroodi: Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: insights from density functional theory calculations. Comput. Theor. Chem. 1095, 15 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    L.-X. Zheng, S.-C. Han, H. Liu, P.-P. Yu, and X.-S. Fang: Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 12, 1527 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    X. Yu, J. Zhang, Z.-H. Zhao, W.-B. Guo, J.-C. Qiu, X.-N. Mou, A.-X. Li, J.P. Claverie, and H. Liu: NiO-TiO2 p-n heterostructured nanocables bridged by zero-bandgap rGO for highly efficient photocatalytic water splitting. Nano Energy 16, 207 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    X.-B. Ning, S.-S. Ge, X.-T. Wang, H. Li, X.-R. Li, X.-Q. Liu, and Y.-L. Huang: Preparation and photocathodic protection property of Ag2S-TiO2 composites. J. Alloy. Compd. 719, 2325 (2017).

    Article  Google Scholar 

  13. 13.

    N.S.M. Mustakim, S. Sepeai, N.A. Ludin, M.A. Mat Teridi, and M.A. Ibrahim: Properties of nanostructured rutile titanium dioxide (TiO2) thin film deposited with silver sulfide (Ag2S) quantum dots as photoanode for solar photovoltaic. Solid State Phenom. 290, 329 (2019).

    Article  Google Scholar 

  14. 14.

    J. Zhang, J. Hu, Y.-F. Zhu, Q. Liu, H. Zhang, R.-G. Du, and C.-J. Lin: Fabrication of CdTe/ZnS core/shell quantum dots sensitized TiO2 nanotube films for photocathodic protection of stainless steel. Corros. Sci. 99, 118 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Z. Liu, G. Ji, D. Guan, B. Wang, and X. Wu: Enhanced charge-carrier transfer by CdS and Ag2S quantum dots co-sensitization for TiO2 nanotube arrays. J. Colloid Interface Sci. 457, 1 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    H. Lin, Z. Mao, N.-J. Zhou, M. Wang, L. Li, and Q. Li: Fabrication of CdS quantum dots sensitized TiO2 nanowires/nanotubes arrays and their photoelectrochemical properties. SN Appl. Sci. 1, 5 (2019).

    Article  Google Scholar 

  17. 17.

    Q. Wang, J. Qiao, and J. Zhou: Fabrication of Ag@Ag2S core-shell nanoparticles sensitized TiO2 nanotube arrays with high photoelectrochemical properties. Phys. Rev. Lett. 3, Q157 (2014).

    CAS  Google Scholar 

  18. 18.

    Q.-Y. Wang, R.-C. Jin, C.-L. Yin, M.-J. Wang, J.-F. Wang, and S.-M. Gao: Photoelectrocatalytic removal of dye and Cr (VI) pollutants with Ag2S and Bi2S3 co-sensitized TiO2 nanotube arrays under solar irradiation. Sep. Purif. Technol. 172, 303 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Z.-Q Liu, D.-B. Guan, G.-Q. Ji, X.-L. Wu, and B. Wang: Enhanced charge-carrier transfer by CdS and Ag2S quantum dots co-sensitization for TiO2 nanotube arrays. J. Colloid Interface Sci. (2015).

    Google Scholar 

  20. 20.

    S.A. Pawar, D.S. Patil, J.H. Kim, P.S. Patil, and J.C. Shin: Quantum dot sensitized solar cell based on TiO2/CdS/Ag2S heterostructure. Opt. Mater. 203, 74 (2016).

    CAS  Google Scholar 

  21. 21.

    X. Chen, F. Liu, X. Yan, Y. Yang, Q. Chen, J. Wan, L. Tian, Q. Xia, and X. Chen: Ag2Mo3O10 nanorods decorated with Ag2S nanoparticles: visible-light photocatalytic activity, photostability, and charge transfer. Chem. Eur. J. 21, 25 (2015).

    CAS  Google Scholar 

  22. 22.

    T.-Y. Liu, B. Liu, L.-F. Yang, X.-L. Ma, and Y.-H. Wang: RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability. Appl. Catal. B Environ. 204, 593 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial supports of the Beijing Natural Science Foundation (No. 3192013).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shikai Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Liu, S., Gu, Y. et al. Optimization of photoelectrochemical performance of Ag2S/TiO2 interface by successive ionic layer adsorption and reaction. MRS Communications 10, 194–199 (2020). https://doi.org/10.1557/mrc.2020.12

Download citation