Skip to main content
Log in

Cellulose hydrogel as a flexible gel electrolyte layer

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We report the synthesis of a novel polymer gel electrolyte primarily based on cellulose extracted from wood along with gelatin, polyacrylic acid (PAA) and potassium hydroxide (KOH) added as additives in minute amounts in various stages. We also study and report the variation of ionic conductivity with variation of various additives. We found that, with variation of additives to hydrogel, its stability and degree of crystallinity are varied. The results were confirmed using x-ray diffraction and Fourier transform infrared spectra studies. An average best ionic conductivity of 96.89mS/cm was reported for a hydrogel: gelatin: PAA: KOH system, which is one of the best reported values of ionic conductivity for gel electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. S.S. Zhang: A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 164, 351–364 (2007).

    Article  CAS  Google Scholar 

  2. F.M. Gray and F.M. Gray: Solid Polymer Electrolytes: Fundamentals and Technological Applications (VCH, New York, 1991).

    Google Scholar 

  3. B. Scrosati, ed.: Applications of Electroactive Polymers (Chapman & Hall, London, 75, 1993).

    Book  Google Scholar 

  4. F.M. Gray: Polymer Electrolytes. Royal Society of Chemistry (VCH, New York, 1997).

    Google Scholar 

  5. J.R. MacCallum and C.A. Vincent, eds.: Polymer Electrolyte Reviews (Springer Science & Business Media, New York, 2, 1989).

    Google Scholar 

  6. W.H. Meyer: Polymer electrolytes for lithium-ion batteries. Adv. Mater. 10, 439–448 (1998).

    Article  CAS  Google Scholar 

  7. J.Y. Song, Y.Y. Wang, and C. Cv Wan: Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 77, 183–197 (1999).

    Article  CAS  Google Scholar 

  8. M. Armand and J-M. Tarascon: Building better batteries. Nature 451, 652 (2008).

    Article  CAS  Google Scholar 

  9. J.B. Goodenough: Rechargeable batteries: challenges old and new. J. Solid State Electrochem. 16, 2019–2029 (2012).

    Article  CAS  Google Scholar 

  10. E. Tsuchida, H. Ohno, and K. Tsunemi: Conduction of lithium ions in polyvinylidene fluoride and its derivatives—I. Electrochim. Acta 28, 591–595 (1983).

    Article  CAS  Google Scholar 

  11. M. Alamgir and K.M. Abraham: Room temperature rechargeable polymer electrolyte batteries. J. Power Sources 54, 40–45 (1995).

    Article  CAS  Google Scholar 

  12. K. Tsunemi, H. Ohno, and E. Tsuchida: A mechanism of ionic conduction of poly (vinylidene fluoride)-lithium perchlorate hybrid films. Electrochim. Acta 28, 833–837 (1983).

    Article  CAS  Google Scholar 

  13. J.F. Fauvarque, S. Guinot, N. Bouzir, E. Salmon, and J.F. Penneau: Alkaline poly (ethylene oxide) solid polymer electrolytes. Application to nickel secondary batteries. Electrochim. Acta 40, 2449–2453 (1995).

    Article  CAS  Google Scholar 

  14. S. Guinot, E. Salmon, J.F. Penneau, and J.F. Fauvarque: A new class of PEO-based SPEs: structure, conductivity and application to alkaline secondary batteries. Electrochim. Acta 43, 1163–1170 (1998).

    Article  CAS  Google Scholar 

  15. C-C. Yang: Polymer Ni-MH battery based on PEO-PVA-KOH polymer electrolyte. J. Power Sources 109, 22–31 (2002).

    Article  CAS  Google Scholar 

  16. C-C. Yang and S-J. Lin.: Alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte for Zn-air battery. J. Power Sources 112, 497–503 (2002).

    Article  CAS  Google Scholar 

  17. M. Gilbert: Crystallinity in poly (vinyl chloride). J. Macromol. Sci. Part C: Polym. Rev 34, 77–135 (1994).

    Article  Google Scholar 

  18. A. Awadhia, S.K. Patel, and S.L. Agrawal: Dielectric investigations in PVA based gel electrolytes. Prog. Cryst. Growth Charact. Mater. 52, 61–68 (2006).

    Article  CAS  Google Scholar 

  19. S.K. Patel, A. Awadhia, and S.L. Agrawal: Thermal and electrical studies on composite gel electrolyte system: PEG-PVA-(NH4CH2C02)2. Phase Transitions 82, 421–432 (2009).

    Article  CAS  Google Scholar 

  20. P. Ueberschlag: PVDF piezoelectric polymer. Sens. Rev. 21, 118–126 (2001).

    Article  Google Scholar 

  21. J. Park, M. Park, G. Nam, J.S. Lee, and J. Cho: All-solid-state cable-type flexible zinc-air battery. Adv. Mater. 27, 1396–1401 (2015).

    Article  CAS  Google Scholar 

  22. D.E. Fenton: Complexes of alkali metal ions with poly (ethylene oxide). Polymer 14, 589 (1973).

    Article  CAS  Google Scholar 

  23. P.V. Wright: Electrical conductivity in ionic complexes of poly (ethylene oxide). Br. Polym. J. 7, 319–327 (1975).

    Article  CAS  Google Scholar 

  24. M.B. Armand, J.M. Chabagno, and M.J. Duclot: Fast Ion Transport in Solids, edited by P. Vashishta, J.N. Mundy & G.K. Shenoy (Electrode and Electrolytes Conference, Materials Science (B2400): United States, 23, 771 (1979).

    Google Scholar 

  25. C. Iwakura, S. Nohara, N. Furukawa, and H. Inoue: The possible use of polymer gel electrolytes in nickel/metal hydride battery. Solid State Ionics 148, 487–492 (2002).

    Article  CAS  Google Scholar 

  26. A. Lewandowski, S. Katarzyna, and J. Malinska: Novel poly (vinyl alco-hol)-KOH-H20 alkaline polymer electrolyte. Solid State Ionics 133, 265–271 (2000).

    Article  CAS  Google Scholar 

  27. G.G. Kumar and S. Sampath: Electrochemical characterization of poly (vinylidenefluoride)-zinc triflate gel polymer electrolyte and its application in solid-state zinc batteries. Solid State Ionics 160, 289–300 (2003).

    Article  CAS  Google Scholar 

  28. G.M. Wu, S.J. Lin, and C.C. Yang: Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes. J. Membr. Sci. 275, 127–133 (2006).

    Article  CAS  Google Scholar 

  29. G.M. Wu, S.J. Lin, and C.C. Yang: Alkaline Zn-air and Al-air cells based on novel solid PVA/PAA polymer electrolyte membranes. J. Membr. Sci. 280, 802–808 (2006).

    Article  CAS  Google Scholar 

  30. H. Zhu, Z. Fang, C. Preston, Y. Li, and L. Hu: Transparent paper: fabrications, properties, and device applications. Energy Environ. Sci. 7, 269–287 (2014).

    Article  CAS  Google Scholar 

  31. H. Zhu, W. Luo, P.N. Ciesielski, Z. Fang, J.Y. Zhu, G. Henriksson, and L. Hu: Wood-derived materials for green electronics, biological devices, and energy applications. Chem. Rev. 116, 9305–9374 (2016).

    Article  CAS  Google Scholar 

  32. H. Zhu, Z. Fang, Z. Wang, J. Dai, Y. Yao, F. Shen, and Q. Yu: Extreme light management in mesoporous wood cellulose paper for optoelectronics. ACS Nano 10, 1369–1377 (2015).

    Article  CAS  Google Scholar 

  33. C-I. Huang and J-R. Chen: Crystallization and chain conformation of semi crystalline and amorphous polymer blends studied by wide-angle and small-angle scattering. J. Polym. Sci., Part B: Polym. Phys. 39, 2705–2715 (2001).

    Article  CAS  Google Scholar 

  34. D. Golodnitsky, E. Strauss, E. Peled, and S. Greenbaum: On order and disorder in polymer electrolytes. J. Electrochem. Soc. 162, A2551–A2566 (2015).

    Article  CAS  Google Scholar 

  35. V. Koul, R. Mohamed, D. Kuckling, H.J.P. Adler, and V. Choudhary: Interpenetrating polymer network (IPN) nanogels based on gelatin and poly (acrylic acid) by inverse miniemulsion technique: synthesis and characterization. Colloids Surf., B 83, 204–213 (2011).

    Article  CAS  Google Scholar 

  36. P. Jaipan, A. Nguyen, and R.J. Narayan: Gelatin-based hydrogels for biomedical applications. MRS Commun. 7, 416–426 (2017).

    Article  CAS  Google Scholar 

  37. R. Dash, M. Foston, and A.J. Ragauskas: Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nano-whiskers. Carbohydr. Polym. 91, 638–645 (2013).

    Article  CAS  Google Scholar 

  38. J.P. Draye, B. Delaey, A. Van de Voorde, A. Van Den Bulcke, B. De Reu, and E. Schacht: In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19, 1677–1687 (1998).

    Article  CAS  Google Scholar 

  39. W.H. Chang, Y. Chang, P.H. Lai, and H.W. Sung: A genipin-crosslinked gelatin membrane as wound-dressing material: in vitro and in vivo studies. J. Biomater. Sci., Polym. Ed. 14, 481–495 (2003).

    Article  CAS  Google Scholar 

  40. K. Burugapalli, D. Bhatia, V. Koul, and V. Choudhary: Interpenetrating polymer networks based on poly (acrylic acid) and gelatin. I: swelling and thermal behavior. J. Appl. Polym. Sci. 82, 217–227 (2001).

    Article  CAS  Google Scholar 

  41. S.L. Agrawal and P.K. Shukla: Dielectric studies on PVA-NH4SCN complexes. Phys. Status Solidi (a) 163, 247–254 (1997).

    Article  CAS  Google Scholar 

  42. C.V.S. Reddy, A.P. Jin, X. Han, Q.Y. Zhu, L.Q. Mai, and W. Chen: Preparation and characterization of (PVP + V205) cathode for battery applications. Electrochem. Commun. 8, 279–283 (2006).

    Article  CAS  Google Scholar 

  43. B. Smitha, S. Sridhar, and A.A. Khan: Polyelectrolyte complexes of chito-san and poly (acrylic acid) as proton exchange membranes for fuel cells. Macromolecules 37, 2233–2239 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Maryland, Baltimore County (UMBC) for supporting this research from startup fund. The authors would also like to thank Scott Riley, Karla Negrete, Shiyani Patel, Ryan Lorence, Christopher Gruenke, and Sedzro Tamakloe for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Madan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poosapati, A., Jang, E., Madan, D. et al. Cellulose hydrogel as a flexible gel electrolyte layer. MRS Communications 9, 122–128 (2019). https://doi.org/10.1557/mrc.2019.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.9

Navigation