Skip to main content

Advertisement

Log in

Artificial neural network correction for density-functional tight-binding molecular dynamics simulations

  • Artificial Intelligence Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The authors developed a Behler–Parrinello-type neural network (NN) to improve the density-functional tight-binding (DFTB) energy and force prediction. The Δ-machine learning approach was adopted and the NN was designed to predict the energy differences between the density functional theory (DFT) quantum chemical potential and DFTB for a given molecular structure. Most notably, the DFTB-NN method is capable of improving the energetics of intramolecular hydrogen bonds and torsional potentials without modifying the framework of DFTB itself. This improvement enables considerably larger simulations of complex chemical systems that currently could not easily been accomplished using DFT or higher level ab initio quantum chemistry methods alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. W.M.C. Foulkes and R. Haydock: Tight-binding models and density-functional theory. Phys. Rev. B 39, 12520–12536 (1989).

    Article  CAS  Google Scholar 

  2. D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner: Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon. Phys. Rev. B 51, 12947–12957 (1995).

    Article  CAS  Google Scholar 

  3. G. Seifert, D. Porezag, and T. Frauenheim: Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme. Int. J. Quantum Chem. 58, 185–192 (1996).

    Article  CAS  Google Scholar 

  4. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260–7268 (1998).

    Article  CAS  Google Scholar 

  5. B. Aradi, B. Hourahine, and T. Frauenheim: DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A 111, 5678–5684 (2007).

    Article  CAS  Google Scholar 

  6. M. Elstner and G. Seifert: Density functional tight binding. Philos. Trans. R. Soc. A 372, 20120483–20120494 (2014).

    Article  Google Scholar 

  7. A.S. Christensen, T. Kubar, Q. Cui and M. Elstner: Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chem. Rev. 116, 5301–5337 (2016).

    Article  CAS  Google Scholar 

  8. K.H. Lee, U. Schnupf, B.G. Sumpter, and S. Irle: Performance of density-functional tight-binding in comparison to ab initio and first-principles methods for isomer geometries and energies of glucose epimers in vacuo and solution. ACS Omega 3, 16899–16915 (2018).

    Article  CAS  Google Scholar 

  9. M. Gaus, A. Goez, and M. Elstner: Parametrization and benchmark of DFTB3 for organic molecules. J. Chem. Theory Comput. 9, 338–354 (2013).

    Article  CAS  Google Scholar 

  10. V.Q. Vuong, J. Akkarapattiakal Kuriappan, M. Kubillus, J.J. Kranz, T. Mast, T.A. Niehaus, S. Irle, and M. Elstner: Parametrization and benchmark of long-range corrected DFTB2 for organic molecules. J. Chem. Theory Comput. 14, 115–125 (2018).

    Article  CAS  Google Scholar 

  11. J. Behler and M. Parrinello: Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  Google Scholar 

  12. J. Behler: Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 134, 074106 (2011).

    Article  Google Scholar 

  13. J. Behler: Representing potential energy surfaces by high-dimensional neural network potentials. J. Phys.: Condens. Matter 26, 183001 (2014).

    CAS  Google Scholar 

  14. J. Behler: Constructing high-dimensional neural network potentials: a tutorial review. Int. J. Quantum Chem. 115, 1032–1050 (2015).

    Article  CAS  Google Scholar 

  15. J.S. Smith, O. Isayev, and A.E. Roitberg: ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8, 3192–3203 (2017).

    Article  CAS  Google Scholar 

  16. K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, and A. Tkatchenko: Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017).

    Article  Google Scholar 

  17. R. Ramakrishnan, P.O. Dral, M. Rupp, and O.A. von Lilienfeld: Big data meets quantum chemistry approximations: the Δ-machine learning approach. J. Chem. Theory Comput. 11, 2087–2096 (2015).

    Article  CAS  Google Scholar 

  18. T.T. Nguyen, E. Székely, G. Imbalzano, J. Behler, G. Csányi, M. Ceriotti, A.W. Götz, and F. Paesani: Comparison of permutationally invariant polynomials, neural networks, and Gaussian approximation potentials in representing water interactions through many-body expansions. J. Chem. Phys. 148, 241725 (2018).

    Article  Google Scholar 

  19. L. Shen, J. Wu, and W. Yang: Multiscale quantum mechanics/molecular mechanics simulations with neural networks. J. Chem. Theory Comput. 12, 4934–4946 (2016).

    Article  CAS  Google Scholar 

  20. L. Shen and W. Yang: Molecular dynamics simulations with quantum mechanics/molecular mechanics and adaptive neural networks. J. Chem. Theory Comput. 14, 1442–1455 (2018).

    Article  CAS  Google Scholar 

  21. M. Gaus, Q. Cui, and M. Elstner: DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). J. Chem. Theory Comput. 7, 931–948 (2011).

    Article  CAS  Google Scholar 

  22. Keras: Deep Learning for humans. https://github.com/keras-team/keras.

  23. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng: TensorFlow: a system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) (2016), pp. 265–283.

    Google Scholar 

  24. D. Nguyen and B. Widrow: Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In 1990 IJCNN International Joint Conference on Neural Networks, (1990) (1990), pp. 21–26.

    Chapter  Google Scholar 

  25. A.D. Becke: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  26. A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Dulak, J. Friis, M.N. Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C. Jennings, P. Bjerre Jensen, J. Kermode, J.R. Kitchin, E. Leonhard Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. Bergmann Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K.S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K.W. Jacobsen: The atomic simulation environment-a Python library for working with atoms. J. Phys.: Condens. Matter 29, 273002 (2017).

    Google Scholar 

  27. M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. Windus, and W. de Jong: NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477–1489 (2010).

    Article  CAS  Google Scholar 

  28. M.A. Addicoat, S. Fukuoka, A.J. Page, and S. Irle: Stochastic structure determination for conformationally flexible heterogenous molecular clusters: application to ionic liquids. J. Comput. Chem. 34, 2591–2600 (2013).

    Article  CAS  Google Scholar 

  29. J. Rezác, K.E. Riley, and P. Hobza: S66: a well-balanced database of benchmark interaction energies relevant to biomolecular structures. J. Chem. Theory Comput. 7, 2427–2438 (2011).

    Article  Google Scholar 

  30. J. Rezác: Empirical self-consistent correction for the description of hydrogen bonds in DFTB3. J. Chem. Theory Comput. 13, 4804–4817 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Andreas Goetz (SDSC) and Dr. Thuong Nguyen (UCSD) for providing us their initial BPNN code for water clusters. We also thank Dr Jacek Jakowski, Dr. Panchapakesan Ganesh, and Dr. Maxim Ziatdinov (all ORNL) for helpful discussions. J.Z. acknowledges support under the Oak Ridge Science Semester (ORSS) grant from the Oak Ridge Institute for Science and Education (ORISE). V.Q.V. acknowledges support by an Energy Science and Engineering Fellowship of the Bredesen Center for Interdisciplinary Research and Graduate Education at the University of Tennessee, Knoxville. S.I. acknowledges support by the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. DOE Office of Science. Calculations were performed at the Center for Nanophase Materials Sciences, which is a U.S. Department of Energy Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Irle.

Supporting information

43579_2019_9030867_MOESM1_ESM.pdf

Supporting information for: Artificial Neural Network Correction for Density-Functional Tight-Binding Molecular Dynamics Simulations

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Vuong, V.Q., Sumpter, B.G. et al. Artificial neural network correction for density-functional tight-binding molecular dynamics simulations. MRS Communications 9, 867–873 (2019). https://doi.org/10.1557/mrc.2019.80

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.80

Navigation