Skip to main content
Log in

Active-learning and materials design: the example of high glass transition temperature polymers

  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Machine-learning (ML) approaches have proven to be of great utility in modern materials innovation pipelines. Generally, ML models are trained on predetermined past data and then used to make predictions for new test cases. Active-learning, however, is a paradigm in which ML models can direct the learning process itself through providing dynamic suggestions/queries for the “next-best experiment.” In this work, the authors demonstrate how an active-learning framework can aid in the discovery of polymers possessing high glass transition temperatures (Tg). Starting from an initial small dataset of polymer Tg measurements, the authors use Gaussian process regression in conjunction with an active-learning framework to iteratively add Tg measurements of candidate polymers to the training dataset. The active-learning framework employs one of three decision making strategies (exploitation, exploration, or balanced exploitation/exploration) for selection of the “next-best experiment.” The active-learning workflow terminates once 10 polymers possessing a Tg greater than a certain threshold temperature are selected. The authors statistically benchmark the performance of the aforementioned three strategies (against a random selection approach) with respect to the discovery of high-Tg polymers for this particular demonstrative materials design challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. A. Mannodi-Kanakkithodi, T.D. Huan, and R. Ramprasad: Mining materials design rules from data: the example of polymer dielectrics. Chem. Mater. 29, 9001–9010 (2017).

    Article  CAS  Google Scholar 

  2. T.D. Huan, S. Boggs, G. Teyssedre, C. Laurent, M. Cakmak, S. Kumar, and R. Ramprasad: Advanced polymeric dielectrics for high energy density applications. Prog. Mater. Sci. 83, 236–269 (2016).

    Article  CAS  Google Scholar 

  3. A. Mannodi-Kanakkithodi, G. Pilania, and R. Ramprasad: Critical assessment of regression-based machine learning methods for polymer dielectrics. Comput. Mater. Sci. 125, 123–135 (2016).

    Article  CAS  Google Scholar 

  4. T.D. Huan, A. Mannodi-Kanakkithodi, C. Kim, V. Sharma, G. Pilania, and R. Ramprasad: A polymer dataset for accelerated property prediction and design. Sci. Data 3, 160012 (2016).

    Article  CAS  Google Scholar 

  5. A. Mannodi-Kanakkithodi, G. Pilania, R. Ramprasad, T. Lookman, and J.E. Gubernatis: Multi-objective optimization techniques to design the pareto front of organic dielectric polymers. Comput. Mater. Sci. 125, 92–99 (2016).

    Article  CAS  Google Scholar 

  6. A. Mannodi-Kanakkithodi, G. Pilania, T.D. Huan, T. Lookman, and R. Ramprasad: Machine learning strategy for accelerated design of polymer dielectrics. Sci. Rep. 6, 20952 (2016).

    Article  Google Scholar 

  7. A. Mannodi-Kanakkithodi, A. Chandrasekaran, C. Kim, T.D. Huan, G. Pilania, V. Botu, and R. Ramprasad: Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond. Mater. Today 21, 785–796 (2018).

    Article  CAS  Google Scholar 

  8. A. Mannodi-Kanakkithodi, G.M. Treich, T.D. Huan, R. Ma, M. Tefferi, Y. Cao, G.A. Sotzing, and R. Ramprasad: Rational co-design of polymer dielectrics for energy storage. Adv. Mater. 28, 6277–6291 (2016).

    Article  CAS  Google Scholar 

  9. V. Sharma, C.C. Wang, R.G. Lorenzini, R. Ma, Q. Zhu, D.W. Sinkovits, G. Pilania, A.R. Oganov, S. Kumar, G.A. Sotzing, S.A. Boggs, and R. Ramprasad: Rational design of all organic polymer dielectrics. Nat. Commun. 5, 4845 (2014).

    Article  CAS  Google Scholar 

  10. D. Das, A. Chandrasekaran, S. Venkatram, and R. Ramprasad: Effect of crystallinity on Li adsorption in polyethylene oxide. Chem. Mater. 30, 8804–8810 (2018).

    Article  CAS  Google Scholar 

  11. S.P. Ong, O. Andreussi, Y. Wu, N. Marzari, and G. Ceder: Electrochemical windows of room-temperature ionic liquids from molecular dynamics and density functional theory calculations. Chem. Mater. 23, 2979–2986 (2011).

    Article  CAS  Google Scholar 

  12. M.K. Warmuth, J. Liao, G. Rätsch, M. Mathieson, S. Putta, and C. Lemmen: Active learning with support vector machines in the drug discovery process. J. Chem. Inf. Comput. Sci. 43, 667–673 (2003). PMID: 12653536.

    Article  CAS  Google Scholar 

  13. B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, and N. De Freitas: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016).

    Article  Google Scholar 

  14. B. Rouet-Leduc, C. Hulbert, K. Barros, T. Lookman, and C.J. Humphreys: Automatized convergence of optoelectronic simulations using active machine learning. Appl. Phys. Lett. 111, 043506 (2017).

    Article  Google Scholar 

  15. R. Yuan, Z. Liu, P.V. Balachandran, D. Xue, Y. Zhou, X. Ding, J. Sun, D. Xue, and T. Lookman: Accelerated discovery of large electrostrains in BaTiO3-based piezo-electrics using active learning. Adv. Mater. 30, 1702884 (2018).

    Article  Google Scholar 

  16. T. Mueller, A.G. Kusne, and R. Ramprasad: Machine learning in materials science: recent progress and emerging applications. In Reviews in Computational Chemistry, edited by A.L. Parrill and K.B. Lipkowitz (John Wiley & Sons, Inc., New York, 29, 2016), pp. 186–273.

    CAS  Google Scholar 

  17. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim: Machine learning in materials informatics: recent applications and prospects. npj Comput. Mater. 3, 54 (2017).

    Article  Google Scholar 

  18. D.J. Audus and J.J. de Pablo: Polymer informatics: opportunities and challenges. ACS Macro Lett. 6, 1078–1082 (2017).

    Article  CAS  Google Scholar 

  19. J.S. Peerless, N.J. Milliken, T.J. Oweida, M.D. Manning, and Y.G. Yingling: Adv. Theory Simul. 2, 1800129 (2018).

    Article  Google Scholar 

  20. S. Thrun: Handbook of Brain Science and Neural Networks (MIT Press, Cambridge, 1995), pp. 381–384.

    Google Scholar 

  21. J. Brandup, E.H. Immergut, and E.A. Grulke: Polymer Handbook, 4th ed. (John Wiley and Sons, New York, 1999).

    Google Scholar 

  22. J. Bicerano: Prediction of Polymer Properties (Marcel Dekker, Inc., New York, USA, 2002).

    Book  Google Scholar 

  23. Polymer Properties Database. http://polymerdatabase.com, (accessed April 10, 2019).

  24. B. Rouet-Leduc, K. Barros, T. Lookman, and C.J. Humphreys: Optimization of GaN LEDs and the reduction of efficiency droop using active machine learning. Sci. Rep. 6, 24862 (2016).

    Article  CAS  Google Scholar 

  25. L. Bassman, P. Rajak, R.K. Kalia, A. Nakano, F. Sha, J. Sun, D.J. Singh, M. Aykol, P. Huck, K. Persson, and P. Vashishta: Active learning for accelerated design of layered materials. npj Comput. Mater. 4, 74 (2018).

    Article  Google Scholar 

  26. D. Weininger: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Model. 28, 31–36 (1988).

    Article  CAS  Google Scholar 

  27. C. Kim, A. Chandrasekaran, T.D. Huan, D. Das, and R. Ramprasad: Polymer genome: a data-powered polymer informatics platform for property predictions. J. Phys. Chem. C 122, 17575–17585 (2018).

    Article  CAS  Google Scholar 

  28. P. Pankajakshan, S. Sanyal, O.E. de Noord, I. Bhattacharya, A. Bhattacharyya, and U. Waghmare: Machine learning and statistical analysis for materials science: stability and transferability of fingerprint descriptors and chemical insights. Chem. Mater. 29, 4190–4201 (2017).

    Article  CAS  Google Scholar 

  29. T.D. Huan, A. Mannodi-Kanakkithodi, and R. Ramprasad: Accelerated materials property predictions and design using motif-based fingerprints. Phys. Rev. B 92, 14106 (2015).

    Article  Google Scholar 

  30. P. Labute: J. Mol. Graph. Model. 18, 464–477 (2000).

    Article  CAS  Google Scholar 

  31. P. Ertl, B. Rohde, and P. Selzer: Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 43, 3714–3717 (2000).

    Article  CAS  Google Scholar 

  32. S. Prasanna and R. Doerksen: Topological polar surface area: a useful descriptor in 2D-QSAR. Curr. Med. Chem. 16, 21–41 (2009).

    Article  CAS  Google Scholar 

  33. K. Nguyen, L. Blum, R. van Deursen, and J-L. Reymond: Classification of organic molecules by molecular quantum numbers. ChemMedChem 4, 1803–1805 (2009).

    Article  CAS  Google Scholar 

  34. RDKit: Open Source Toolkit for Cheminformatics. http://www.rdkit.org/ (accessed April 10, 2019).

  35. A. Forrester and A.K.A. Sóbester: Engineering Design via Surrogate Modelling (John Wiley and Sons, Chichester, West Sussex, 2008).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rampi Ramprasad.

Additional information

Chiho Kim and Anand Chandrasekaran equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Chandrasekaran, A., Jha, A. et al. Active-learning and materials design: the example of high glass transition temperature polymers. MRS Communications 9, 860–866 (2019). https://doi.org/10.1557/mrc.2019.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.78

Navigation