Skip to main content
Log in

Experiment Specification, Capture and Laboratory Automation Technology (ESCALATE): a software pipeline for automated chemical experimentation and data management

  • Artificial Intelligence Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Applying artificial intelligence to materials research requires abundant curated experimental data and the ability for algorithms to request new experiments. ESCALATE (Experiment Specification, Capture and Laboratory Automation Technology)—an ontological framework and opensource software package—solves this problem by providing an abstraction layer for human- and machine-readable experiment specification, comprehensive and extensible (meta-) data capture, and structured data reporting. ESCALATE simplifies the initial data collection process, and its reporting and experiment generation mechanisms simplify machine learning integration. An initial ESCALATE implementation for metal halide perovskite crystallization was used to perform 55 rounds of algorithmically-controlled experiment plans, capturing 4336 individual experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table I
Figure 2
Table II
Figure 3
Figure 4
Figure 5
Table III
Figure 6
Table IV
Table V
Figure 7

Similar content being viewed by others

References

  1. NSF CHEWorkshop: Framing the Role of Big Data andModern Data Science in Chemistry. Available at: https://www.nsf.gov/mps/che/workshops/data_ chemistry_workshop_report_03262018.pdf (accessed December 21, 2018).

  2. Mission Innovation: Materials Acceleration Platform: Accelerating Advanced Energy Materials Discovery by Integrating High-Throughput Methods with Artificial Intelligence Report of the Clean Energy Materials Innovation Challenge Expert Workshop. Available at: http://mission-innovation.net/wp-content/uploads/2018/01/Mission-Innovation-IC6-Report-Materials- Acceleration-Platform-Jan-2018.pdf (accessed December 21, 2018).

  3. Multi-Agency, Multi-Year Program Plan in Advanced Energy Materials Discovery, Development, and Process Design: Available at: https://www.energy.gov/sites/prod/files/2018/12/f58/Multi-Agency%20Multi-Year% 20Program%20Plan%20in%20Advanced%20Energy%20Materials% 20Discovery%20Development%20and%20Process%20Design_Workshop% 20Summary%20Report.pdf (accessed December 21, 2018).

  4. A.B. Henson, P.S. Gromski, and L. Cronin: Designing algorithms to aid discovery by chemical robots. ACS Cent. Sci. 4, 793–804 (2018).

    Article  CAS  Google Scholar 

  5. D.P. Tabor, L.M. Roch, S.K. Saikin, C. Kreisbeck, D. Sheberla, J.H. Montoya, S. Dwaraknath, M. Aykol, C. Ortiz, H. Tribukait, C. Amador-Bedolla, C.J. Brabec, B. Maruyama, K.A. Persson, and A. Aspuru-Guzik: Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).

    Article  CAS  Google Scholar 

  6. J.-P. Correa-Baena, K. Hippalgaonkar, J. van Duren, S. Jaffer, V.R. Chandrasekhar, V. Stevanovic, C. Wadia, S. Guha, and T. Buonassisi: Accelerating materials development via automation, machine learning, and high-performance computing. Joule 2, 1410–1420 (2018).

    Article  CAS  Google Scholar 

  7. X.-D. Xiang, X. Sun, G. Briceño, Y. Lou, K.-A. Wang, H. Chang, W.G. Wallace-Freedman, S.-W. Chen, and P.G. Schultz: A combinatorial approach to materials discovery. Science 268, 1738–1740 (1995).

    Article  CAS  Google Scholar 

  8. P.G. Schultz and X.-D. Xiang: Combinatorial approaches to materials science. Curr. Opin. Solid State Mater. Sci. 3, 153–158 (1998).

    Article  CAS  Google Scholar 

  9. H. Koinuma and I. Takeuchi: Combinatorial solid-state chemistry of inorganic materials. Nat. Mater. 3, 429–438 (2004).

    Article  CAS  Google Scholar 

  10. I. Takeuchi, R.B. van Dover, and H. Koinuma: Combinatorial synthesis and evaluation of functional inorganic materials using thin-film techniques. MRS Bull. 27, 301–308 (2002).

    Article  CAS  Google Scholar 

  11. Z.H. Barber and M.G. Blamire: High throughput thin film materials science. Mater. Sci. Technol. 24, 757–770 (2008).

    Article  CAS  Google Scholar 

  12. S.I. Woo, K.W. Kim, H.Y. Cho, K.S. Oh, M.K. Jeon, N.H. Tarte, T.S. Kim, and A. Mahmood: Current status of combinatorial and high-throughput methods for discovering new materials and catalysts. QSAR Comb. Sci. 24, 138–154 (2005).

    Article  CAS  Google Scholar 

  13. M.L. Green, I. Takeuchi, and J.R. Hattrick-Simpers: Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys. 113, 231101 (2013).

    Article  CAS  Google Scholar 

  14. L.A. Baumes, P. Serna, and A. Corma: Merging traditional and high-throughput approaches results in efficient design, synthesis and screening of catalysts for an industrial process. Appl. Catal. A 381, 197–208 (2010).

    Article  CAS  Google Scholar 

  15. R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, and H. Lam: Combinatorial and high-throughput screening of materials libraries: review of state of the art. ACS Comb. Sci. 13, 579–633 (2011).

    Article  CAS  Google Scholar 

  16. M. Shevlin: Practical high-throughput experimentation for chemists. ACS Med. Chem. Lett. 8, 601–607 (2017).

    Article  CAS  Google Scholar 

  17. W.F. Maier, K. Stöwe, and S. Sieg: Combinatorial and high-throughput materials science. Angew. Chem. Int. Ed Engl. 46, 6016–6067 (2007).

    Article  CAS  Google Scholar 

  18. K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, and A. Walsh: Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    Article  CAS  Google Scholar 

  19. B. Sanchez-Lengeling and A. Aspuru-Guzik: Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018).

    Article  CAS  Google Scholar 

  20. P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S.A. Friedler, J. Schrier, and A.J. Norquist: Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).

    Article  CAS  Google Scholar 

  21. D.T. Ahneman, J.G. Estrada, S. Lin, S.D. Dreher, and A.G. Doyle: Predicting reaction performance in C-N cross-coupling using machine learning. Science 360, 186–190 (2018).

    Article  CAS  Google Scholar 

  22. S. Lin, S. Dikler, W.D. Blincoe, R.D. Ferguson, R.P. Sheridan, Z. Peng, D.V. Conway, K. Zawatzky, H. Wang, T. Cernak, I.W. Davies, D.A. DiRocco, H. Sheng, C.J. Welch, and S.D. Dreher: Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS. Science. 361, eaar6236 (2018).

    Article  CAS  Google Scholar 

  23. R.J. Xu, J.H. Olshansky, P.D.F. Adler, Y. Huang, M.D. Smith, M. Zeller, J. Schrier, and A.J. Norquist: Understanding structural adaptability: a reactant informatics approach to experiment design. Mol. Syst. Des. Eng. 3, 473–484 (2018).

    Article  CAS  Google Scholar 

  24. V. Duros, J. Grizou, W. Xuan, Z. Hosni, D.-L. Long, H.N. Miras, and L. Cronin: Human versus robots in the discovery and crystallization of gigantic polyoxometalates. Angew. Chem. Int. Ed. Engl. 56, 10815–10820 (2017).

    Article  CAS  Google Scholar 

  25. Z. Zhou, X. Li, and R.N. Zare: Optimizing chemical reactions with deep reinforcement learning. ACS Cent. Sci. 3, 1337–1344 (2017).

    Article  CAS  Google Scholar 

  26. A.-C. Bédard, A. Adamo, K.C. Aroh, M.G. Russell, A.A. Bedermann, J. Torosian, B. Yue, K.F. Jensen, and T.F. Jamison: Reconfigurable system for automated optimization of diverse chemical reactions. Science 361, 1220–1225 (2018).

    Article  CAS  Google Scholar 

  27. P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker, M. Krein, J. Poleski, R. Barto, and B. Maruyama: Autonomy in materials research: a case study in carbon nanotube growth. npj Comput. Mater. 2, 16031 (2016).

    Article  Google Scholar 

  28. A.G. Kusne, T. Gao, A. Mehta, L. Ke, M.C. Nguyen, K.-M. Ho, V. Antropov, C.-Z. Wang, M.J. Kramer, C. Long, and I. Takeuchi: On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Sci. Rep. 4, 6367 (2014).

    Article  CAS  Google Scholar 

  29. B. Celse, S. Rebours, F. Gay, P. Coste, L. Bourgeois, O. Zammit, and V. Lebacque: Integration of an informatics system in a high throughput experimentation. Description of a global framework illustrated through several examples. Oil Gas Sci. Technol.––Rev. IFP Energies nouvelles 68, 445–468 (2013).

    Article  Google Scholar 

  30. J. Bai, Y. Xue, J. Bjorck, R. Le Bras, B. Rappazzo, R. Bernstein, S.K. Suram, R.B. Van Dover, J.M. Gregoire, and C.P. Gomes: Phase mapper: accelerating materials discovery with AI. AIMag 39, 15 (2018).

    Article  Google Scholar 

  31. B. Cao, L.A. Adutwum, A.O. Oliynyk, E.J. Luber, B.C. Olsen, A. Mar, and J.M. Buriak: How To optimize materials and devices via design of experiments and machine learning: demonstration using organic photovoltaics. ACS Nano 12, 7434–7444 (2018).

    Article  CAS  Google Scholar 

  32. V. Stanev, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, and I. Takeuchi: Machine learning modeling of superconducting critical temperature. npj Comput. Mater. 4, 1 (2018).

    Article  CAS  Google Scholar 

  33. Q. Yan, J. Yu, S.K. Suram, L. Zhou, A. Shinde, P.F. Newhouse, W. Chen, G. Li, K.A. Persson, J.M. Gregoire, and J.B. Neaton: Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment. Proc. Natl. Acad. Sci. USA 114, 3040–3043 (2017).

    Article  CAS  Google Scholar 

  34. F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, and A. Mehta: Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4, eaaq1566 (2018).

    Article  CAS  Google Scholar 

  35. A. Shinde, S.K. Suram, Q. Yan, L. Zhou, A.K. Singh, J. Yu, K.A. Persson, J.B. Neaton, and J.M. Gregoire: Discovery of manganese-based solar fuel photoanodes via integration of electronic structure calculations, Pourbaix stability modeling, and high-throughput experiments. ACS Energy Lett. 2, 2307–2312 (2017).

    Article  CAS  Google Scholar 

  36. M.L. Green, C.L. Choi, J.R. Hattrick-Simpers, A.M. Joshi, I. Takeuchi, S.C. Barron, E. Campo, T. Chiang, S. Empedocles, J.M. Gregoire, A.G. Kusne, J. Martin, A. Mehta, K. Persson, Z. Trautt, J. Van Duren, and A. Zakutayev: Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl. Phys. Rev. 4, 011105 (2017).

    Article  CAS  Google Scholar 

  37. A. Zakutayev, N. Wunder, M. Schwarting, J.D. Perkins, R. White, K. Munch, W. Tumas, and C. Phillips: An open experimental database for exploring inorganic materials. Sci. Data 5, 180053 (2018).

    Article  Google Scholar 

  38. J. Li, Y. Lu, Y. Xu, C. Liu, Y. Tu, S. Ye, H. Liu, Y. Xie, H. Qian, and X. Zhu: AIR-Chem: authentic intelligent robotics for chemistry. J. Phys. Chem. A 122, 9142–9148 (2018).

    Article  CAS  Google Scholar 

  39. N. Adams and U.S. Schubert: From data to knowledge: chemical data management, data mining, and modeling in polymer science. J. Comb. Chem. 6, 12–23 (2004).

    Article  CAS  Google Scholar 

  40. N. Adams and U.S. Schubert: Software solutions for combinatorial and high-throughput materials and polymer research. Macromol. Rapid Commun. 25, 48–58 (2004).

    Article  CAS  Google Scholar 

  41. L.M. Roch, F. Häse, C. Kreisbeck, T. Tamayo-Mendoza, L.P.E. Yunker, J.E. Hein, and A. Aspuru-Guzik: ChemOS: orchestrating autonomous experimentation. Sci Robot. 3, eaat5559 (2018).

    Article  Google Scholar 

  42. J. Hachmann, M.A.F. Afzal, M. Haghighatlari, and Y. Pal: Building and deploying a cyberinfrastructure for the data-driven design of chemical systems and the exploration of chemical space. Mol. Simul. 44, 921–929 (2018).

    Article  CAS  Google Scholar 

  43. L.A. Baumes, S. Jimenez, and A. Corma: hITeQ: a new workflow-based computing environment for streamlining discovery. Application in materials science. Catal. Today 159, 126–137 (2011).

    Article  CAS  Google Scholar 

  44. K. Tran, A. Palizhati, S. Back, and Z.W. Ulissi: Dynamic workflows for routine materials discovery in surface science. J. Chem. Inf. Model. 58, 2392–2400 (2018).

    Article  CAS  Google Scholar 

  45. M. Bates, A.J. Berliner, J. Lachoff, P.R. Jaschke, and E.S. Groban: Wet Lab accelerator: a web-based application democratizing laboratory automation for synthetic biology. ACS Synth. Biol. 6, 167–171 (2017).

    Article  CAS  Google Scholar 

  46. Autoprotocol: Available at: http://autoprotocol.org/ (accessed January 8, 2019).

  47. G. Linshiz, N. Stawski, S. Poust, C. Bi, J.D. Keasling, and N.J. Hillson: PaR-PaR laboratory automation platform. ACS Synth. Biol. 2, 216–222 (2013).

    Article  CAS  Google Scholar 

  48. E. Whitehead, F. Rudolf, H.-M. Kaltenbach, and J. Stelling: Automated planning enables complex protocols on liquid-handling robots. ACS Synth. Biol. 7, 922–932 (2018).

    Article  CAS  Google Scholar 

  49. B. Keller, J. Vrana, A. Miller, G. Newman, and E. Klavins: Aquarium: The Laboratory Operating System (Version v2.5.0). Zenodo. (2019).

    Google Scholar 

  50. Emerald Cloud Lab: Available at: https://www.emeraldcloudlab.com/ (accessed January 11, 2019).

  51. B. Miles and P.L. Lee: Achieving reproducibility and closed-loop automation in biological experimentation with an IoT-enabled lab of the future. SLAS Technol. 23, 432–439 (2018).

    Article  Google Scholar 

  52. Transcriptic: Powering On-Demand Biology Transcriptic. Available at: https://transcriptic.com/ (accessed January 15, 2019).

  53. D.B. Mitzi: Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials In Progress in Inorganic Chemistry, edited by K.D. Karlin (John Wiley & Sons, Inc., 9, Hoboken, NJ, USA, 1999), pp. 1–121.

    Google Scholar 

  54. M.D. Smith, E.J. Crace, A. Jaffe, and H.I. Karunadasa: The diversity of layered halide perovskites. Annu. Rev. Mater. Res. 48, 111–136 (2018).

    Article  CAS  Google Scholar 

  55. S. Li, C. Zhang, J.-J. Song, X. Xie, J.-Q. Meng, and S. Xu: Metal halide perovskite single crystals: from growth process to application. Crystals. (Basel) 8, 220 (2018).

    Article  CAS  Google Scholar 

  56. H.J. Snaith: Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17, 372–376 (2018).

    Article  CAS  Google Scholar 

  57. M.I.H. Ansari, A. Qurashi, and M.K. Nazeeruddin: Frontiers, opportunities, and challenges in perovskite solar cells: a critical review. J. Photochem. Photobiol. C: Photochem. Rev. 35, 1–24 (2018).

    Article  CAS  Google Scholar 

  58. F. Yao, P. Gui, Q. Zhang, and Q. Lin: Molecular engineering of perovskite photodetectors: recent advances in materials and devices. Mol. Syst. Des. Eng. 3, 702–716 (2018).

    Article  CAS  Google Scholar 

  59. G. Lozano: The role of metal halide perovskites in next-generation lighting devices. J. Phys. Chem. Lett. 9, 3987–3997 (2018).

    Article  CAS  Google Scholar 

  60. M.D. Smith and H.I. Karunadasa: White-light emission from layered halide perovskites. Acc. Chem. Res. 51, 619–627 (2018).

    Article  CAS  Google Scholar 

  61. S. Ahmad, C. George, D.J. Beesley, J.J. Baumberg, and M. De Volder: Photo-rechargeable organo-halide perovskite batteries. Nano Lett. 18, 1856–1862 (2018).

    Article  CAS  Google Scholar 

  62. F. Häse, L.M. Roch, and A. Aspuru-Guzik: Next-generation experimentation with self-driving laboratories. TRECHEM. Doi:10.1016/j.trechm.2019.02.007.

  63. J.A. McLaughlin, C.J. Myers, Z. Zundel, G. Misirli, M. Zhang, I.D. Ofiteru, A. Goñi-Moreno, and A. Wipat: Synbiohub: a standards-enabled design repository for synthetic biology. ACS Synth. Biol. 7, 682–688 (2018).

    Article  CAS  Google Scholar 

  64. G. Grethe, G. Blanke, H. Kraut, and J.M. Goodman: International chemical identifier for reactions (RInChI). J. Cheminform. 10, 22 (2018).

    Article  CAS  Google Scholar 

  65. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling: Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, New York, 1992).

    Google Scholar 

  66. The precision of the NIMBUS4 is negatively impacted by the operating conditions required for metal halide perovskite synthesis including high temperature and use of GBL as a solvent.

  67. JSON: Available at: http://json.org/ (accessed January 11, 2019).

  68. Allotrope Foundation Data Standard: Available at: https://www.allotrope.org (accessed January 15, 2019).

  69. ChemAxon––Software Solutions and Services for Chemistry & Biology: Available at: https://chemaxon.com/ (accessed 4 January 2019).

  70. G. Landrum: RDKit, Available at: http://www.rdkit.org (accessed 15 January 2019).

  71. M.D. Wilkinson, M. Dumontier, I.J.J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L.B. da Silva Santos, P.E. Bourne, J. Bouwman, A.J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C.T. Evelo, R. Finkers, A. Gonzalez-Beltran, A.J.G. Gray, P. Groth, C. Goble, J.S. Grethe, J. Heringa, P.A.C. ‘t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S.J. Lusher, M.E. Martone, A. Mons, A.L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M.A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons: The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  Google Scholar 

  72. Citrine Informatics: Available at: https://citrine.io/ (accessed March 22, 2019).

  73. W. McKinney: Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, edited by S. van der Walt and J. Millman, (Scipy 2010, Austin, TX, 2010), pp. 51–56.

    Google Scholar 

Download references

Acknowledgments

We thank Alex Cristofaro (MIT Broad Institute) and Scott Novotney (Two-Six Labs) for helpful feedback in the development of the ESCALATE state space and file reporting mechanisms. This material is based upon the work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001118C0036. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA. This material is DISTRIBUTION A. Approved for public release: distribution unlimited. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. J.S. acknowledges the Henry Dreyfus Teacher-Scholar Award (TH-14-010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Schrier.

Supplementary material

43579_2019_9030846_MOESM1_ESM.pdf

Experiment Specification, Capture and Laboratory Automation Technology (ESCALATE): A software pipeline for automated chemical experimentation and data management

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.72.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pendleton, I.M., Cattabriga, G., Li, Z. et al. Experiment Specification, Capture and Laboratory Automation Technology (ESCALATE): a software pipeline for automated chemical experimentation and data management. MRS Communications 9, 846–859 (2019). https://doi.org/10.1557/mrc.2019.72

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.72

Navigation