Skip to main content
Log in

Plastic deformation affecting anodic dissolution in electrochemical migration

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This study investigated the effect of plastic deformation on anodic dissolution in electrochemical migration (ECM) through the growth of deposits. The morphology of deposits synthesized by ECM was analyzed using scanning electron microscopy, where sponge-shaped deposits were observed on the cathode electrode. The mechanism of anodic dissolution was examined by experimentally measuring the variation in the mass of electrodes. The increase and saturation of anodic dissolution in ECM with plastic deformation were observed and were empirically formulated in terms of the change in activation energy. Thus, plastic deformation is proposed as a promising parameter that contributes to controlling ECM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. T. Djenizian, I. Hanzu, M. Eyraud, and L. Santinacci: Electrochemical fabrication of tin nanowires: a short review. Comptes Rendus Chim. 11, 995 (2008).

    Article  CAS  Google Scholar 

  2. M. Motoyama and F.B. Prinz: Electrodeposition and behavior of single metal nanowire probes. ACS Nano 8, 3556 (2014).

    Article  CAS  Google Scholar 

  3. X. Zhang, D. Li, L. Bourgeois, H. Wang, and P.A. Webley: Direct electro-deposition of porous gold nanowire arrays for biosensing applications. ChemPhysChem 10, 436 (2009).

    Article  CAS  Google Scholar 

  4. M.Z. Atashbar and S. Singamaneni: Room temperature gas sensor based on metallic nanowires. Sensors Actuators, B Chem. 111–112, 13 (2005).

    Article  Google Scholar 

  5. T. Takemoto, R.M. Latanision, T.W. Eagar, and A. Matsunawa: Electrochemical migration tests of solder alloys in pure water. Corros. Sci. 39, 1415 (1997).

    Article  CAS  Google Scholar 

  6. R. Abbel, L. van de Peppel, G. Kirchner, J.J. Michels, and P. Groen: Lifetime limitations in organic electronic devices due to metal electrochemical migration. MRS Commun. 7, 664 (2017).

    Article  CAS  Google Scholar 

  7. T. Aoki, Y. Li, and M. Saka: A proposal of fabrication method for Cu oxide micro-structure using ion migration. In Proceedings of the 2016 Annual Meeting of JSME Tohoku Regional Student Division, 22, 2016, in Japanese.

    Google Scholar 

  8. S. Fukaya, T. Aoki, Y. Kimura, and M. Saka: Enhanced fabrication of hybrid Cu-Cu2O nanostructures on electrodes using electrochemical migration. Mech. Eng. Lett. 4, 17–00604 (2018).

    Article  Google Scholar 

  9. T. Aoki, Y. Li, and M. Saka: Morphology control of hybrid Cu–Cu2O nano-structures fabricated by electrochemical migration. Mater. Lett. 236, 420 (2019).

    Article  CAS  Google Scholar 

  10. T. Nakajima, Y. Li, and M. Saka: Study on utilization of ionic migration for fabrication of Ag nanodendrites. In Proceedings of the 2015 Materials and Mechanics Conference of JSME, GS0707, 2015, in Japanese.

    Google Scholar 

  11. T. Nakakura and M. Saka: Fabrication of large-scale Ag micro/nanostruc-tures using electrochemical migration. Micro Nano Lett. 13, 923 (2018).

    Article  CAS  Google Scholar 

  12. A.R. Despic, R.G. Raicheff, and J. O’M. Bockris: Mechanism of the acceleration of the electrodic dissolution of metals during yielding under stress. J. Chem. Phys. 49, 926 (1968).

    Article  CAS  Google Scholar 

  13. J.O’M. Bockris and P.K. Subramanyan: Contributions to the electrochemical basis of the stability of metals. Corros. Sci. 10, 435 (1970).

    Article  CAS  Google Scholar 

  14. R.E. Fryxell and N.H. Nachtrieb: Effect of stress on metal electrode potentials. J. Electrochem. Soc. 99, 495 (1952).

    Article  CAS  Google Scholar 

  15. L. Yang, G.T. Horne, and G.M. Pound: Physical Metallurgy of Stress Corrosion Fracture (Interscience Publishers, New York, 1, 1959).

  16. N. Ohtani: Strain electrode. Bull. Jpn. Inst. Met. 46, 233 (1973) in Japanese.

    Google Scholar 

  17. T.P. Hoar and J.C. Scully: Mechanochemical anodic dissolution of austen-itic stainless steel in hot chloride solution at controlled electrode potential. J. Electrochem. Soc. 111, 348 (1964).

    Article  CAS  Google Scholar 

  18. R.G. Raicheff, A. Damjanovic, and J. O’M. Bockris: Dependence of the velocity of the anodic dissolution of iron on its yield rate under tension. J. Chem. Phys. 47, 2198 (1967).

    Article  Google Scholar 

  19. E.M. Gutman, G. Solovioff, and D. Eliezer: The mechanochemical behavior of type 316L stainless steel. Corros. Sci. 38, 1141 (1996).

    Article  CAS  Google Scholar 

  20. A. Nazarov, V. Vivier, D. Thierry, F. Vucko, and B. Tribollet: Effect of mechanical stress on the properties of steel surfaces: scanning Kelvin probe and local electrochemical impedance study. J. Electrochem. Soc. 164, C66 (2017).

    Article  CAS  Google Scholar 

  21. Y. Kimura and M. Saka: On growth of a micro/nano-material under migration. In Proceedings of the 2017 Autumn Meeting of JSME Tohoku Regional Division, 105, 2017, in Japane

  22. T. Murata: Theory of strain electrode and the application to corrosion study (2). Dynamic straining of non-filmed electrode at constant strain rate. Corros. Eng. 22, 133 (1973) in Japanese.

    CAS  Google Scholar 

  23. T. Murata: Practical application of strain electrode methods. Tetsu-to-Hagané 60, 580 (1974) in Japanese.

    Article  CAS  Google Scholar 

  24. N. Ohtani and Y. Hayashi: Analysis of crack propagation rate in stress corrosion cracking by a mechanochemical model. J. Jpn. Inst. Met. Mater. 38, 1103 (1974) in Japanese.

    Article  CAS  Google Scholar 

  25. F. Appel: Thermally activated dislocation processes in NaCl single crystals (I). Phys. Status Solidi A 25, 607 (1974).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a Grant-in-Aid for JSPS KAKENHI Grant-in-Aid for Scientific Research (B) No. 17H03139. This study was performed at the Micro/ Nano-Machining Research and Education Center of Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Kimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, Y., Wakayama, S. & Saka, M. Plastic deformation affecting anodic dissolution in electrochemical migration. MRS Communications 9, 773–777 (2019). https://doi.org/10.1557/mrc.2019.68

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.68

Navigation