Skip to main content
Log in

Tension gradient self-assembly to facilely fabricate polytetrafluoroethylene coatings for oil–water separation

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A facile and low-cost method based for tension gradient self-assembly was developed to prepare polytetrafluoroethylene (PTFE) nanofiber coatings on stainless-steel fiber felts. The PTFE particles were used as building blocks and the self-assembly process was analyzed thoroughly. After being sintered, the PTFE particles were transformed into PTFE nanofibers. The felts coated with the PTFE nanofibers exhibited super-hydrophobicity and superoleophilicity, and could separate a series of oil–water mixtures with high efficiency and good reusability. The coated felts also presented excellent chemical and thermal stabilities. Over all, this approach could easily fabricate ultra-robust oil–water separation materials suitable for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Y. Yu, H. Chen, Y. Liu, V.S. Craig, C. Wang, L.H. Li, and Y. Chen: Superhydrophobic and superoleophilic porous boron nitride nanosheet/polyvinylidene fluoride composite material for oil‐polluted water cleanup. Adv. Mater. Interfaces 2, 1400267 (2015).

    Article  Google Scholar 

  2. G. Kwon, E. Post, and A. Tuteja: Membranes with selective wettability for the separation of oil–water mixtures. MRS Commun. 5, 475 (2015).

    Article  CAS  Google Scholar 

  3. Z. Xue, Y. Cao, N. Liu, L. Feng, and L. Jiang: Special wettable materials for oil/water separation. J. Mater. Chem. A 2, 2445 (2014).

    Article  CAS  Google Scholar 

  4. K. Yin, D. Chu, X. Dong, C. Wang, J.-A. Duan, and J. He: Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil–water separation. Nanoscale 9, 14229 (2017).

    Article  CAS  Google Scholar 

  5. J. Song, S. Huang, Y. Lu, X. Bu, J.E. Mates, A. Ghosh, R. Ganguly, C.J. Carmalt, I.P. Parkin, W. Xu, and C.M. Megaridis: Self-driven one-step oil removal from oil spill on water via selective-wettability steel mesh. ACS Appl. Mater. Interfaces 6, 19858 (2014).

    Article  CAS  Google Scholar 

  6. E. Wang, H. Wang, Y. Hu, Z. Liu, and Y. Zhu: Corrosion-resistant engineering superhydrophobic and superoleophilic bulk materials with oil–water separation property. J. Mater. Sci. 52, 7130 (2017).

    Article  CAS  Google Scholar 

  7. S. Wang, Y. Song, and L. Jiang: Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids. Nanotechnology 18, 015103 (2006).

    Article  Google Scholar 

  8. L. Wang, S. Yang, J. Wang, C. Wang, and L. Chen: Fabrication of superhydrophobic TPU film for oil–water separation based on electrospinning route. Mater. Lett. 65, 869 (2011).

    Article  CAS  Google Scholar 

  9. J. Zhang and S. Seeger: Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv. Funct. Mater. 21, 4699 (2011).

    Article  CAS  Google Scholar 

  10. C. Du, J. Wang, Z. Chen, and D. Chen: Durable superhydrophobic and superoleophilic filter paper for oil–water separation prepared by a colloidal deposition method. Appl. Surf. Sci. 313, 304 (2014).

    Article  CAS  Google Scholar 

  11. J. Wang, Z. Shi, J. Fan, Y. Ge, J. Yin, and G. Hu: Self-assembly of graphene into three-dimensional structures promoted by natural phenolic acids. J. Mater. Chem. 22, 22459 (2012).

    Article  CAS  Google Scholar 

  12. C. Chen, C. Du, D. Weng, A. Mahmood, D. Feng, and J. Wang: Robust superhydrophobic polytetrafluoroethylene nanofibrous coating fabricated by self-assembly and its application for oil/water separation. ACS Appl. Nano Mater. 1, 2632 (2018).

    Article  CAS  Google Scholar 

  13. A.B. Artyukhin, O. Bakajin, P. Stroeve, and A. Noy: Layer-by-layer electrostatic self-assembly of polyelectrolyte nanoshells on individual carbon nanotube templates. Langmuir 20, 1442 (2004).

    Article  CAS  Google Scholar 

  14. V. Tsukruk, V. Bliznyuk, D. Visser, A. Campbell, T. Bunning, and W. Adams: Electrostatic deposition of polyionic monolayers on charged surfaces. Macromolecules 30, 6615 (1997).

    Article  CAS  Google Scholar 

  15. H.-H. Lu, Y.-M. Yang, and J.-R. Maa: Effect of artificially provoked Marangoni convection at a gas/liquid interface on absorption. Ind. Eng. Chem. Res. 35, 1921 (1996).

    Article  CAS  Google Scholar 

  16. Y. Sha, H. Chen, Y. Yin, S. Tu, L. Ye, and Y. Zheng: Characteristics of the Marangoni convection induced in initial quiescent water. Ind. Eng. Chem. Res. 49, 8770 (2010).

    Article  CAS  Google Scholar 

  17. N.O. Young, J.S. Goldstein, and M.J. Block: The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350 (1959).

    Article  Google Scholar 

  18. D. Feng, D. Weng, and J. Wang: A facile interfacial self-assembly of crystalline colloidal monolayers by tension gradient. Micromachines (Basel) 9, 297 (2018).

    Article  Google Scholar 

  19. Z. Luo, Z. Zhang, L. Hu, W. Liu, Z. Guo, H. Zhang, and W. Wang: Stable bionic superhydrophobic coating surface fabricated by a conventional curing process. Adv. Mater. 20, 970 (2008).

    Article  CAS  Google Scholar 

  20. Z. Luo, Z. Zhang, W. Wang, W. Liu, and Q. Xue: Various curing conditions for controlling PTFE micro/nano-fiber texture of a bionic superhydrophobic coating surface. Mater. Chem. Phys. 119, 40 (2010).

    Article  CAS  Google Scholar 

  21. W. Zhang, N. Liu, Y. Cao, Y. Chen, L. Xu, X. Lin, and L. Feng: A solvothermal route decorated on different substrates: controllable separation of an oil/water mixture to a stabilized nanoscale emulsion. Adv. Mater. 27, 7349 (2015).

    Article  CAS  Google Scholar 

  22. A. Accardo, V. Shalabaeva, E. Di Cola, M. Burghammer, R. Krahne, C. Riekel, and S. Dante: Superhydrophobic surfaces boost fibril selfassembly of amyloid β peptides. ACS Appl. Mater. Interfaces 7, 20875 (2015).

    Article  CAS  Google Scholar 

  23. Z. Xue, Z. Sun, Y. Cao, Y. Chen, L. Tao, K. Li, L. Feng, Q. Fu, and Y. Wei: Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil–water separation. RSC Adv. 3, 23432 (2013).

    Article  CAS  Google Scholar 

  24. P. Pi, K. Hou, C. Zhou, G. Li, X. Wen, S. Xu, J. Cheng, and S. Wang: Superhydrophobic Cu2S@Cu2O film on copper surface fabricated by a facile chemical bath deposition method and its application in oil–water separation. Appl. Surf. Sci. 396, 566 (2017).

    Article  CAS  Google Scholar 

  25. S. Yu and Z. Guo: Superhydrophobic surfaces based on polypyrrole with corrosion resistance and the separation of oil/water mixture properties. RSC Adv. 5, 107880 (2015).

    Article  CAS  Google Scholar 

  26. P. Roach, N.J. Shirtcliffe, and M.I. Newton: Progress in superhydrophobic surface development. Soft Matter 4, 224 (2008).

    Article  CAS  Google Scholar 

  27. Z. Bi and D.W. Mueller: Friction predication on pin-to-plate interface of PTFE material and steel. Friction, Published online 10 August 2018.

    Google Scholar 

  28. I.S. Bayer, A.J. Davis, E. Loth, and A. Steele: Water jet resistant superhydrophobic carbonaceous films by flame synthesis and tribocharging. Mater. Today Commun. 3, 57 (2015).

    Article  CAS  Google Scholar 

  29. I. Bayer, V. Caramia, D. Fragouli, F. Spano, R. Cingolani, and A. Athanassiou: Electrically conductive and high temperature resistant superhydrophobic composite films from colloidal graphite. J. Mater. Chem. 22, 2057 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was funded by the National Natural Science Foundation of China (Grant Nos. 51775296, 51375253, 51703116, and 20171301886). The authors also acknowledge the support of this work from the State Key Laboratory of Tribology, Tsinghua University, China, under grant codes SKLT2017C06 and SKLT2018C06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiadao Wang.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.65

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, D., Weng, D., Chen, C. et al. Tension gradient self-assembly to facilely fabricate polytetrafluoroethylene coatings for oil–water separation. MRS Communications 9, 690–696 (2019). https://doi.org/10.1557/mrc.2019.65

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.65

Navigation