Skip to main content

Advertisement

Log in

Increasing surface charge density by effective charge accumulation layer inclusion for high-performance triboelectric nanogenerators

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Powering autonomous electronic devices is a key challenge toward the development of smart sensor networks. In this work, a state-of-the-art triboelectric nanogenerator is devised to enhance the output performance with an effective surface charge density of 70.2 µC/m2, which is 140 times higher than the initial results. Thin film Parylene-C material is deposited to increase charge accumulation by allowing the acceptance of more charges and enhance output performance by a factor of 10. By considering the merit of simple fabrication, we believe the effective charge inclusion layer will be an ideal energy source for low-power portable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. F.R. Fan, Z.Q. Tian, and Z. Lin Wang: Flexible triboelectric generator. Nano Energy 1, 328–334 (2012).

    Article  CAS  Google Scholar 

  2. F.R. Fan, W. Tang, and Z.L. Wang: Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics. Adv. Mater.. 28, 4283–4305 (2016).

    Article  CAS  Google Scholar 

  3. H. Zhang, Y. Yang, Y. Su, J. Chen, C. Hu, Z. Wu, Y. Liu, C.P. Wong, Y. Bando, and Z.L. Wang: Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous water/ethanol. Nano Energy 2, 693–701 (2013).

    Article  CAS  Google Scholar 

  4. Z.L. Wang: Triboelectric nanogenerators as new energy technology and self-powered sensors–principles, problems and perspectives. R. Soc. Chem. 7, 9533–9557 (2014).

    Google Scholar 

  5. S. Wang, Y. Xie, S. Niu, L. Lin, and Z.L. Wang: Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26, 2818–2824 (2014).

    Article  CAS  Google Scholar 

  6. Y. Yang, H. Zhang, J. Chen, Q. Jing, Y.S. Zhou, X. Wen, and Z.L. Wang: Single-electrode-based sliding triboelectric nanogenerator for selfpowered displacement vector sensor system. ACS Nano 7, 7342–7351 (2013).

    Article  CAS  Google Scholar 

  7. K-E. Byun, M.-H. Lee, Y. Cho, S-G. Nam, H-J. Shin, and S. Park: Potential role of motion for enhancing maximum output energy of triboelectric nanogenerator. APL Mater. 5, 074107 (2017).

    Article  Google Scholar 

  8. M.L. Seol, S.H. Lee, J.W. Han, D. Kim, G.H. Cho, and Y.K. Choi: Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy 17, 63–71 (2015).

    Article  CAS  Google Scholar 

  9. T. Huang, M. Lu, H. Yu, Q. Zhang, H. Wang, and M. Zhu: Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide. Sci. Rep. 5, 13942 (2015).

    Article  CAS  Google Scholar 

  10. H. Van Ngoc and D.J. Kang: Flexible, transparent and exceptionally high power output nanogenerators based on ultrathin ZnO nanoflakes. Nanoscale 8, 5059–5066 (2016).

    Article  Google Scholar 

  11. M.A.P. Mahmud, J. Lee, G. Kim, H. Lim, and K.B. Choi: Improving the surface charge density of a contact-separation-based triboelectric nanogenerator by modifying the surface morphology. Microelectron. Eng. 159, 102–107 (2016).

    Article  CAS  Google Scholar 

  12. S. Niu, X. Wang, F. Yi, Y.S. Zhou, and Z.L. Wang: A universal selfcharging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6, 8975 (2015).

    Article  CAS  Google Scholar 

  13. Y. Yu and X. Wang: Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mech. Lett. 9, 514–530 (2016).

    Article  Google Scholar 

  14. S-W.K. Wanchul Seung, H-J. Yoon, T. Yun Kim, H. Ryu, J. Kim, J-H. Lee, J. Hwan Lee, S. Kim, Y. Kwon Park, and Y. Jun Park: Boosting powergenerating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv. Energy Mater. 7, 1600988 (2017).

    Article  Google Scholar 

  15. S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu, Y. Zhou, and Z.L. Wang: Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding. Adv. Mater. 26, 6720–6728 (2014).

    Article  CAS  Google Scholar 

  16. W. Jie, W. Changsheng, D. Yejing, Z. Zhihao, W. Aurelia, Z. Tiejun, and Z. Lin Wang: Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 8, 1–7 (2017).

    CAS  Google Scholar 

  17. Y. Feng, Y. Zheng, G. Zhang, D. Wang, F. Zhou, and W. Liu: A new protocol toward high output TENG with polyimide as charge storage layer. Nano Energy 38, 467–476 (2017).

    Article  CAS  Google Scholar 

  18. C. Villeneuve-Faure, K. Makasheva, L. Boudou, and G. Teyssedre: charge injection in thin dielectric layers by atomic force microscopy: influence of geometry and material work function of the AFM tip on the injection process. Nanotechnology 27, 245702 (2016).

    Article  CAS  Google Scholar 

  19. H.Y. Li, L. Su, S.Y. Kuang, C.F. Pan, G. Zhu, and Z.L. Wang: Significant Enhancement of Triboelectric Charge Density by Fluorinated Surface Modification in Nanoscale for Converting Mechanical Energy. Adv. Funct. Mater.. 25, 5691–5697 (2015).

    Article  CAS  Google Scholar 

  20. H.W. Lo and Y.C. Tai: Parylene-based electret power generators. J. Micromechanics Microengineering 18, 104006 (2008).

    Article  Google Scholar 

  21. A. Kahouli, A. Sylvestre, L. Ortega, F. Jomni, B. Yangui, M. Maillard, B. Berge, J.C. Robert, and J. Legrand: Structural and dielectric study of parylene C thin films. Appl. Phys. Lett. 94, 152901 (2009).

    Article  Google Scholar 

  22. P. Song, S. Kuang, N. Panwar, G. Yang, T. Danny, S. Tjin, W. Ng, M. Majid, G. Zhu, K. Yong, and Z.L. Wang: A self-powered implantable drug-delivery system using biokinetic energy. Adv. Mater. 29, 1605668 (2017).

    Article  Google Scholar 

  23. O. Access, A. Heid, A. Stett, and V. Bucher: examination of dielectric strength of thin Parylene C films under various conditions. Curr. Dir. Biomed. Eng. 2, 39–41 (2016).

    Article  Google Scholar 

  24. S. Genter and O. Paul: Parylene-C as an electret material for micro energy harvesting. Proc. Power MEMS. pp. 317–320.

  25. Y. Wada, Y. Hamate, S. Nagasawa, and H. Kuwano: Aging characteristics of electret used in a vibration-based electrostatic induction energy harvester. 2011 16th Int. Solid-State Sensors, Actuators and Microsystems Conference, pp. 2626–2629 (2011).

    Chapter  Google Scholar 

  26. J. Ma, Y. Jie, J. Bian, T. Li, X. Cao, and N. Wang: From triboelectric nanogenerator to self-powered smart floor: a minimalist design. Nano Energy 39, 192–199 (2017).

    Article  CAS  Google Scholar 

  27. Z.H. Lin, G. Cheng, S. Lee, K.C. Pradel, and Z.L. Wang: Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 26, 4690–4696 (2014).

    Article  CAS  Google Scholar 

  28. F.R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z.L. Wang: Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 3109–3114 (2012).

    Article  CAS  Google Scholar 

  29. H-H. Hsieh, F-C. Hsu, and Y-F. Chen: Energetically Autonomous, Wearable, and Multifunctional Sensor. ACS Sensors 3, 113–120 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported under the AMPEERS-2 project by the theme “Networks and energy storage”. The authors thank Thierry CAMILLIONI for the Instron setup and Jessica MAZUIR for advice in preparation of cross section sample for imaging by SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ramuz.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.64

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravichandran, A.N., Ramuz, M. & Blayac, S. Increasing surface charge density by effective charge accumulation layer inclusion for high-performance triboelectric nanogenerators. MRS Communications 9, 682–689 (2019). https://doi.org/10.1557/mrc.2019.64

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.64

Navigation