Skip to main content
Log in

Designing heterogeneous hierarchical material systems: a holistic approach to structural and materials design

  • Artificial Intelligence Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Many materials systems comprise complex structures where multiple materials are integrated to achieve a desired performance. Often in these systems, it is a combination of both the materials and their structure that dictate performance. Here the authors layout an integrated computational–statistical–experimental methodology for hierarchical materials systems that takes a holistic design approach to both the material and structure. The authors used computational modeling of the physical system combined with statistical design of experiments to explore an activated carbon adsorption bed. The large parameter space makes experimental optimization impractical. Instead, a computational–statistical approach is coupled with physical experiments to validate the optimization results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table I.
Figure 2
Figure 3
Figure 4
Table II.
Figure 5
Figure 6

Similar content being viewed by others

References

  1. S. Is¸ıtan, S. Ceylan, Y. Topcu, C. Hintz, J. Tefft, T. Chellappa, J. Guo, and J.L. Goldfarb: Product quality optimization in an integrated biorefinery: conversion of pistachio nutshell biomass to biofuels and activated biochars via pyrolysis. Energy Convers. Manag. 127, 576–588 (2016).

    Article  Google Scholar 

  2. C.M.A. Parlett, K. Wilson and A.F. Lee: Hierarchical porous materials: catalytic applications. Chem. Soc. Rev. 42, 3876–3893 (2013).

    Article  CAS  Google Scholar 

  3. S. Siankevich, G. Savoglidis, Z. Fei, G. Laurenczy, D.T.L. Alexander, N. Yan, and P.J. Dyson: A novel platinum nanocatalyst for the oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under mild conditions. J. Catal. 315, 67–74 (2014).

    Article  CAS  Google Scholar 

  4. H. Samassekou, A. Alkabsh, K. Stiwinter, A. Khatri, and D. Mazumdar: Atomic-level insights through spectroscopic and transport measurements into the large-area synthesis of MoS2 thin films. MRS Commun. 8, 1328–1334 (2018).

    Article  CAS  Google Scholar 

  5. Y. Wang, S. Cao, H. Liu, M. Zhu, and M.N. Obrovac: Si–TiN alloy Li-ion battery negative electrode materials made by N2 gas milling. MRS Commun. 8, 1352–1357 (2018).

    Article  CAS  Google Scholar 

  6. Y. Yuan, R. Chen, H. Zhang, Q. Liu, J. Liu, J. Yu, C. Wang, Z. Sun, and J. Wang: Hierarchical NiSe@Co2(CO3)(OH)2 heterogeneous nanowire arrays on nickel foam as electrode with high areal capacitance for hybrid supercapacitors. Electrochim. Acta 294, 325–336 (2019).

    Article  CAS  Google Scholar 

  7. T. Maneerung, S. Tokura, and R. Rujiravanit: Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr. Polym. 72, 43–51 (2008).

    Article  CAS  Google Scholar 

  8. A. Uzunoglu, D.A. Kose, K. Kose, E. Gokmese, and F. Gokmese: PdAg-decorated three-dimensional reduced graphene oxide-multi-walled carbon nanotube hierarchical nanostructures for high-performance hydrogen peroxide sensing. MRS Commun. 8, 680–686 (2018).

    Article  CAS  Google Scholar 

  9. A. ElMekawy, H.M. Hegab, D. Pant, and C.P. Saint: Bio-analytical applications of microbial fuel cell-based biosensors for onsite water quality monitoring. J. Appl. Microbiol. 124, 302–313 (2018).

    Article  CAS  Google Scholar 

  10. K. Mallikarjuna, N.J. Sushma, B.V.S. Reddy, G. Narasimha, B. Deva, and P. Raju: Palladium nanoparticles: single-step plant-mediated green chemical procedure using Piper betle leaves broth and their anti-fungal studies. Int. J. Chem. Anal. Sci. 4, 14–18 (2013).

    Article  CAS  Google Scholar 

  11. L. Ji, W. Chen, L. Duan, and D. Zhu: Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ. Sci. Technol. 43, 2322–2327 (2009).

    Article  CAS  Google Scholar 

  12. A.F. Hofmann, D.N. Fronczek, and W.G. Bessler: Mechanistic modeling of polysulfide shuttle and capacity loss in lithium-sulfur batteries. J. Power Sources 259, 300–310 (2014).

    Article  CAS  Google Scholar 

  13. J. Tan and E.M. Ryan: Computational study of electro-convection effects on dendrite growth in batteries. J. Power Sources 323, 67–77 (2016).

    Article  CAS  Google Scholar 

  14. E.M. Ryan and P.P. Mukherjee: Mesoscale modeling in electrochemical devices—A critical perspective. Prog. Energy Combust. Sci. 71, 118–142 (2019).

    Article  Google Scholar 

  15. A.N. Mistry and P.P. Mukherjee: Probing spatial coupling of resistive modes in porous intercalation electrodes through impedance spectroscopy. Phys. Chem. Chem. Phys. 21, 3805–3813 (2018).

    Article  Google Scholar 

  16. C.-F. Chen, A. Mistry, and P.P. Mukherjee: Probing impedance and microstructure evolution in lithium–sulfur battery electrodes. J. Phys. Chem. C 121, 21206–21216 (2017).

    Article  CAS  Google Scholar 

  17. A.N. Mistry, k smith, and P.P. Mukherjee: Electrochemistry coupled mesoscale complexations in electrodes lead to thermo-electrochemical extremes. ACS Appl. Mater. Interfaces 10, 28644–28655 (2018).

    Article  CAS  Google Scholar 

  18. G.J. Nelson, L.J. Ausderau, S. Shin, J.R. Buckley, A. Mistry, P.P. Mukherjee, and V. De Andrade: Transport-Geometry interactions in Li-ion cathode materials imaged using X-ray nanotomography. J. Electrochem. Soc. 164, A1412–A1424 (2017).

    Article  CAS  Google Scholar 

  19. A.N. Mistry and P.P. Mukherjee: Precipitation–microstructure interactions in the Li–sulfur battery electrode. J. Phys. Chem. C 121, 26256–26264 (2017).

    Article  CAS  Google Scholar 

  20. M. Stein, A. Mistry, and P.P. Mukherjee: Mechanistic understanding of the role of evaporation in electrode processing. J. Electrochem. Soc. 164, A1616–A1627 (2017).

    Article  CAS  Google Scholar 

  21. A. El-Qanni, N.N. Nassar, and G. Vitale: A combined experimental and computational modeling study on adsorption of propionic acid onto silica-embedded NiO/MgO nanoparticles. Chem. Eng. J. 327, 666–677 (2017).

    Article  CAS  Google Scholar 

  22. S.A. Weissman and N.G. Anderson: Design of experiments (DoE) and process optimization. A review of recent publications. Org. Process Res. Dev. 19, 1605–1633 (2015).

    Article  CAS  Google Scholar 

  23. M.A. Lillo-Ródenas, A.J. Fletcher, K.M. Thomas, D. Cazorla-Amorós, and A. Linares-Solano: Competitive adsorption of a benzene–toluene mixture on activated carbons at low concentration. Carbon N. Y. 44, 1455–1463 (2006).

    Article  Google Scholar 

  24. M.A. Lillo-Ródenas, D. Cazorla-Amorós, and A. Linares-Solano: Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon N. Y. 43, 1758–1767 (2005).

    Article  Google Scholar 

  25. J. Oakley and A. O’Hagan: Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika 89, 769–784 (2002).

    Article  Google Scholar 

  26. R.H. Myers, D.C. Montgomery, and C.M. Anderson-Cook: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed. (Wiley, Hoboken, NJ, 2016).

    Google Scholar 

  27. B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. de Freitas: Taking the human Out of the loop: a review of Bayesian optimization. Proc. IEEE 104, 148–175 (2016).

    Article  Google Scholar 

  28. P.I. Frazier and J. Wang: Bayesian Optimization for Materials Design, edited by T. Lookman, F.J. Alexander, K. Rajan (2016). doi: 10.1007/978-3-319-23871-5_3.

  29. B. Rubahamya, K.S. Kumar Reddy, A. Prabhu, A. Al Shoaibi, and C. Srinivasakannan: Porous carbon screening for benzene sorption. Environ. Prog. Sustainable Energy 38, S93–S99 (2018).

    Article  Google Scholar 

  30. H.H. Tseng, M.Y. Wey, Y.S. Liang, and K.H. Chen: Catalytic removal of SO2, NO and HCl from incineration flue gas over activated carbonsupported metal oxides. Carbon N. Y. 41, 1079–1085 (2003).

    Article  CAS  Google Scholar 

  31. L. Li, P.A. Quinlivan, and D.R.U. Knappe: Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon N. Y. 40, 2085–2100 (2002).

    Article  CAS  Google Scholar 

  32. D.C. Montgomery: Design and Analysis of Experiments, 8th ed. (John Wiley & Sons, Inc., Hoboken, NJ, 2013).

    Google Scholar 

  33. I. Battiato, D.M. Tartakovsky, A.M. Tartakovsky, and T.D. Scheibe: Hybrid models of reactive transport in porous and fractured media. Adv. Water Resour. 34, 1140–1150 (2011).

    Article  CAS  Google Scholar 

  34. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  35. E.M. Ryan and A.M. Tartakovsky: A hybrid micro-scale model for transport in connected macro-pores in porous media. J. Contam. Hydrol. 126, 61–71 (2011).

    Article  CAS  Google Scholar 

  36. E.M. Ryan, A.M. Tartakovsky, and C. Amon: Pore scale modeling of competitive adsorption in a porous Medium. J. Contam. Hydrol. 120–121, 56–78 (2011).

    Article  Google Scholar 

  37. P. Meakin and A.M. Tartakovsky: Modeling and simulation of pore scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys. 47, RG3002 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

Research presented was supported by the National Science Foundation through grant 1727316. This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (DMR-1719875). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation grant number ACI-1548562 through STAMPEDE2 at the Texas Advanced Computing Center through allocation TG-CCR180027. The authors thank Cabot Corporation for supplying the activated carbons used in this work, and Ian Miller for running preliminary experiments as part of his Undergraduate Research coursework at the Pennsylvania State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Ryan.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.60

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryan, E., Pollard, Z.A., Ha, QT. et al. Designing heterogeneous hierarchical material systems: a holistic approach to structural and materials design. MRS Communications 9, 628–636 (2019). https://doi.org/10.1557/mrc.2019.60

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.60

Navigation