Skip to main content
Log in

Challenges and opportunities of polymer design with machine learning and high throughput experimentation

  • Artificial Intelligence Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In this perspective, the authors challenge the status quo of polymer innovation. The authors first explore how research in polymer design is conducted today, which is both time consuming and unable to capture the multi-scale complexities of polymers. The authors discuss strategies that could be employed in bringing together machine learning, data curation, high-throughput experimentation, and simulations, to build a system that can accurately predict polymer properties from their descriptors and enable inverse design that is capable of designing polymers based on desired properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table I
Figure 2
Figure 3

Similar content being viewed by others

References

  1. A. Gregory and M.H. Stenzel: Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature’s building blocks. Prog. Polym. Sci. 37, 38 (2012).

    Article  CAS  Google Scholar 

  2. S.J. Garcia: Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur. Polym. J. 53, 118 (2014).

    Article  CAS  Google Scholar 

  3. A.C. Rinkenauer, S. Schubert, A. Traeger and U.S. Schubert: The influence of polymer architecture on in vitro pDNA transfection. J. Mater. Chem. B 3, 7477 (2015).

    Article  CAS  Google Scholar 

  4. A. Dag, M. Callari, H. Lu and M.H. Stenzel: Modulating the cellular uptake of platinum drugs with glycopolymers. Polymer Chemistry 7, 1031 (2016).

    Article  CAS  Google Scholar 

  5. D. Paramelle, S. Gorelik, Y. Liu and J. Kumar: Photothermally responsive gold nanoparticle conjugated polymer-grafted porous hollow silica nanocapsules. Chem. Commun. 52, 9897 (2016).

    Article  CAS  Google Scholar 

  6. J. Kumar, A. Bousquet and M.H. Stenzel: Thiol-alkyne Chemistry for the Preparation of Micelles with Glycopolymer Corona: Dendritic Surfaces versus Linear Glycopolymer in Their Ability to Bind to Lectins. Macromol. Rapid Commun. 32, 1620 (2011).

    Article  CAS  Google Scholar 

  7. J. Kumar, L. McDowall, G. Chen and M.H. Stenzel: Synthesis of thermoresponsive glycopolymersviacopper catalysed azide-alkyne ‘click’ chemistry for inhibition of ricin: the effect of spacer between polymer backbone and galactose. Polymer Chemistry 2, 1879 (2011).

    Article  CAS  Google Scholar 

  8. J.-P. Correa-Baena, K. Hippalgaonkar, J. van Duren, S. Jaffer, V.R. Chandrasekhar, V. Stevanovic, C. Wadia, S. Guha and T. Buonassisi: Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing. Joule 2, 1410 (2018).

    Article  CAS  Google Scholar 

  9. J. Bicerano: Prediction of Polymer Properties, (Taylor & Francis Inc, Bosa Roca, United States, 2002).

    Book  Google Scholar 

  10. M.A.C. Stuart, W.T.S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov and S. Minko: Emerging applications of stimuliresponsive polymer materials. Nat. Mater. 9, 101 (2010).

    Article  Google Scholar 

  11. R. Jiang, Q. Jin, B. Li, D. Ding and A.-C. Shi: Phase Diagram of Poly(ethylene oxide) and Poly(propylene oxide) Triblock Copolymers in Aqueous Solutions. Macromolecules 39, 5891 (2006).

    Article  CAS  Google Scholar 

  12. H.S. Ashbaugh and M.E. Paulaitis: Monomer Hydrophobicity as a Mechanism for the LCST Behavior of Poly(ethylene oxide) in Water. Ind. Eng. Chem. Res. 45, 5531 (2006).

    Article  CAS  Google Scholar 

  13. A. Halperin, M. Kröger and F.M. Winnik: Poly(N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research. Angew. Chem. Int. Ed. 54, 15342 (2015).

    Article  CAS  Google Scholar 

  14. R. Hoogenboom, H.M.L. Thijs, M.J.H.C. Jochems, B.M. van Lankvelt, M. W.M. Fijten and U.S. Schubert: Tuning the LCST of poly(2-oxazoline)s by varying composition and molecular weight: alternatives to poly(N-isopropylacrylamide)? Chem. Commun. 0, 5758 (2008).

    Article  CAS  Google Scholar 

  15. G. Odian: Principles of Polymerization, Fourth Edition ed. (John Wiley & Sons, New York, United States, 2004).

    Book  Google Scholar 

  16. J.S. Smith, O. Isayev and A.E. Roitberg: ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci 8, 3192 (2017).

    Article  CAS  Google Scholar 

  17. T.W. Anderson: An Introduction To Multivariate Statistical Analysis, (Wiley, New York, 1958).

    Google Scholar 

  18. G.E.P. Box and G.C. Tiao: Bayesian Inference in Statistical Analysis, (John Wiley & Sons, New York, United States, 2011).

    Google Scholar 

  19. C. Cortes and V. Vapnik: Support-Vector Networks. Machin. Learn. 20, 273 (1995).

    Article  Google Scholar 

  20. L. Rokach and O. Maimon: Data Mining With Decision Trees: Theory and Applications, (World Scientific Publishing Co., Inc.2014).

    Book  Google Scholar 

  21. Y. LeCun, Y. Bengio and G. Hinton: Deep learning. Nature 521, 436 (2015).

    Article  CAS  Google Scholar 

  22. J.H. Friedman: Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 29, 1189 (2001).

    Article  Google Scholar 

  23. V. Aseyev, H. Tenhu and F.M. Winnik: Non-ionic Thermoresponsive Polymers in Water, in Self Organized Nanostructures of Amphiphilic Block Copolymers II, edited by A. H. E. Müller and O. Borisov (Springer Berlin Heidelberg, Berlin, Heidelberg, 2011), pp. 29.

  24. J.N. Wei, D. Duvenaud and A. Aspuru-Guzik: Neural Networks for the Prediction of Organic Chemistry Reactions. ACS Cent. Sci 2, 725 (2016).

    Article  CAS  Google Scholar 

  25. R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T.D. Hirzel, D. Duvenaud, D. Maclaurin, M.A. Blood-Forsythe, H.S. Chae, M. Einzinger, D.-G. Ha, T. Wu, G. Markopoulos, S. Jeon, H. Kang, H. Miyazaki, M. Numata, S. Kim, W. Huang, S.I. Hong, M. Baldo, R.P. Adams and A. Aspuru-Guzik: Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15, 1120 (2016).

    Article  Google Scholar 

  26. F. Häse, C. Kreisbeck and A. Aspuru-Guzik: Machine learning for quantum dynamics: deep learning of excitation energy transfer properties. Chem. Sci 8, 8419 (2017).

    Article  Google Scholar 

  27. S.-L. Benjamin, O. Carlos, G. Gabriel L. and A.-G. Alan: Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC), (ChemRxiv, 2017), p. 10.26434/chemrxiv.5309668.v3.

    Google Scholar 

  28. D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gomez-Bombarelli, T. Hirzel, A. Aspuru-Guzik and R.P. Adams: Convolutional networks on graphs for learning molecular fingerprints, in Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2 (MIT Press, Montreal, Canada, 2015), pp. 2224.

    Google Scholar 

  29. R. Gómez-Bombarelli, J.N. Wei, D. Duvenaud, J.M. Hernández-Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T.D. Hirzel, R.P. Adams and A. Aspuru-Guzik: Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent. Sci 4, 268 (2018).

    Article  Google Scholar 

  30. T.D. Huan, A. Mannodi-Kanakkithodi, C. Kim, V. Sharma, G. Pilania and R. Ramprasad: A polymer dataset for accelerated property prediction and design. Sci. Data 3, 160012 (2016).

    Article  CAS  Google Scholar 

  31. A. Mannodi-Kanakkithodi, G. Pilania, T.D. Huan, T. Lookman and R. Ramprasad: Machine Learning Strategy for Accelerated Design of Polymer Dielectrics. Sci. Rep. 6, 20952 (2016).

    Article  Google Scholar 

  32. C. Kim, A. Chandrasekaran, T.D. Huan, D. Das and R. Ramprasad: Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions. J. Phys. Chem. C 122, 17575 (2018).

    Article  CAS  Google Scholar 

  33. M. Zeng, J.N. Kumar, Z. Zeng, S. Ramasamy, V.R. Chandrasekhar and K. Hippalgaonkar: Graph Convolutional Neural Networks for Polymers Property Prediction. arXiv, 1811.06231 (2018).

    Google Scholar 

  34. Q. Wei, R.G. Melko and J.Z.Y. Chen: Identifying polymer states by machine learning. Physical Review E 95, 032504 (2017).

    Article  Google Scholar 

  35. J. Kumar, Q. Li, K.Y.T. Tang, T. Buonassisi, A.L. Gonzalez-Oyarce and J. Ye: Machine Learning Enables Polymer Cloud-Point Engineering via Inverse Design, (ChemRxiv, 2018), p. 10.26434/chemrxiv.7528343.v1.

    Google Scholar 

  36. M.G. Luca, V. Jan, A. Emre, O. Runhai, V.L. Sergey, D. Claudia and S. Matthias: Learning physical descriptors for materials science by compressed sensing. New Journal of Physics 19, 023017 (2017).

    Article  Google Scholar 

  37. B. Dünweg and K. Kremer: Molecular dynamics simulation of a polymer chain in solution. The Journal of Chemical Physics 99, 6983 (1993).

    Article  Google Scholar 

  38. R.D. Groot and P.B. Warren: Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. The Journal of Chemical Physics 107, 4423 (1997).

    Article  CAS  Google Scholar 

  39. C. Kutzner, S. Páll, M. Fechner, A. Esztermann, B.L. de Groot and H. Grubmüller: Best bang for your buck: GPU nodes for GROMACS biomolecular simulations. Journal of Computational Chemistry 36, 1990 (2015).

    Article  CAS  Google Scholar 

  40. S. Oliver, L. Zhao, A.J. Gormley, R. Chapman and C. Boyer: Living in the Fast Lane—High Throughput Controlled/Living Radical Polymerization. Macromolecules 52, 3 (2018).

    Article  Google Scholar 

  41. P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker, M. Krein, J. Poleski, R. Barto and B. Maruyama: Autonomy in materials research: a case study in carbon nanotube growth. Npj Computational Materials 2, 16031 (2016).

    Article  Google Scholar 

Download references

Acknowledgments

J.N.K. and Q.L. are supported by the AME Programmatic Fund from the Agency for Science, Technology and Research under Grant No. A1898b0043. The concepts put forward in this paper were developed through discussions with Prof. Tonio Buonassisi, Dr. Kedar Hippalgaonkar, and Dr. Anibal L. Gonzalez-Oyarce.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jatin N. Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, J.N., Li, Q. & Jun, Y. Challenges and opportunities of polymer design with machine learning and high throughput experimentation. MRS Communications 9, 537–544 (2019). https://doi.org/10.1557/mrc.2019.54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.54

Navigation