Skip to main content
Log in

Using convolutional neural networks to predict composite properties beyond the elastic limit

  • Artificial Intelligence Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Composites are ubiquitous throughout nature and often display both high strength and toughness, despite the use of simple base constituents. In the hopes of recreating the high-performance of natural composites, numerical methods such as finite element method (FEM) are often used to calculate the mechanical properties of composites. However, the vast design space of composites and computational cost of numerical methods limit the application of high-throughput computing for optimizing composite design, especially when considering the entire failure path. In this work, the authors leverage deep learning (DL) to predict material properties (stiffness, strength, and toughness) calculated by FEM, motivated by DL’s significantly faster inference speed. Results of this study demonstrate potential for DL to accelerate composite design optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. C. Ortiz and M.C. Boyce: Bioinspired structural materials. Science 319, 1053 (2008).

    Article  CAS  Google Scholar 

  2. U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, and R.O. Ritchie: Bioinspired structural materials. Nat. Mater. 14, 23 (2015).

    Article  CAS  Google Scholar 

  3. H.D. Espinosa, J.E. Rim, F. Barthelat, and M.J. Buehler: Merger of structure and material in nacre and bone—perspectives on de novo biomimetic materials. Prog. Mater. Sci. 54, 1059 (2009).

    Article  CAS  Google Scholar 

  4. M.A. Meyers, J. McKittrick, and P-Y. Chen: Structural biological materials: critical mechanics-materials connections. Science 339, 773 (2013).

    Article  CAS  Google Scholar 

  5. X. Wei, M. Naraghi, and H.D. Espinosa: Optimal length scales emerging from shear load transfer in natural materials: application to carbon-based nanocomposite design. ACS Nano 6, 2333 (2012).

    Article  CAS  Google Scholar 

  6. G.X. Gu, F. Libonati, S.D. Wettermark, and M.J. Buehler: Printing nature: unraveling the role of nacre’s mineral bridges. J. Mech. Behav. Biomed. Mater. 76, 135 (2017).

    Article  CAS  Google Scholar 

  7. F. Libonati, G.X. Gu, Z. Qin, L. Vergani, and M.J. Buehler: Bone-inspired materials by design: toughness amplification observed using 3D printing and testing. Adv. Eng. Mater. 18, 1354 (2016).

    Article  CAS  Google Scholar 

  8. Y. Kim, Y. Kim, T.I. Lee, T.S. Kim, and S. Ryu: An extended analytic model for the elastic properties of platelet-staggered composites and its application to 3D printed structures. Compos. Struct. 189, 27 (2018).

    Article  Google Scholar 

  9. P. Tran, T.D. Ngo, A. Ghazlan, and D. Hui: Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings. Composites, Part B 108, 210 (2017).

    Article  CAS  Google Scholar 

  10. P. Zhang, M.A. Heyne, and A.C. To: Biomimetic staggered composites with highly enhanced energy dissipation: modeling, 3D printing, and testing. J. Mech. Phys. Solids 83, 285 (2015).

    Article  CAS  Google Scholar 

  11. G.X. Gu, M. Takaffoli, and M.J. Buehler: Hierarchically enhanced impact resistance of bioinspired composites. Adv. Mater. 29, 1 (2017).

    Article  CAS  Google Scholar 

  12. B. Ji and H. Gao: Mechanical properties of nanostructure of biological materials. J. Mech. Phys. Solids 52, 1963 (2004).

    Article  Google Scholar 

  13. H. Jeong, S. Signetti, T.S. Han, and S. Ryu: Phase field modeling of crack propagation under combined shear and tensile loading with hybrid formulation. Comput. Mater. Sci. 155, 483 (2018).

    Article  Google Scholar 

  14. C. Miehe, M. Hofacker, and F. Welschinger: A phase field model for rateindependent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199, 2765 (2010).

    Article  Google Scholar 

  15. C. Miehe, F. Welschinger, and M. Hofacker: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273 (2010).

    Article  Google Scholar 

  16. H. Amor, J.J. Marigo, and C. Maurini: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57, 1209 (2009).

    Article  Google Scholar 

  17. C. Kuhn and R. Müller: A continuum phase field model for fracture. Eng. Fract. Mech. 77, 3625 (2010).

    Article  Google Scholar 

  18. B. Bourdin, G.A. Francfort, and J.J. Marigo: The variational approach to fracture. J. Elast. 91, 5 (2008).

    Article  Google Scholar 

  19. A. Krizhevsky, I. Sutskever and G.E. Hinton: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84 (2017).

    Article  Google Scholar 

  20. Y. Lecun, Y. Bengio, and G. Hinton: Deep learning. Nature 521, 436 (2015).

    Article  CAS  Google Scholar 

  21. T. Jo, J. Hou, J. Eickholt, and J. Cheng: Improving protein fold recognition by deep learning networks. Sci. Rep. 5, 1 (2015).

    Article  Google Scholar 

  22. L. Wei and E. Roberts: Neural network control of focal position during time-lapse microscopy of cells. Sci. Rep. 8, 1 (2018).

    Article  Google Scholar 

  23. M. Paganini, L. De Oliveira, and B. Nachman: CaloGAN: simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks. Phys. Rev. D 97, 14021 (2018).

    Article  CAS  Google Scholar 

  24. P.Z. Hanakata, E.D. Cubuk, D.K. Campbell, and H.S. Park: Accelerated search and design of stretchable graphene kirigami using machine learning. Phys. Rev. Lett. 121, 255304 (2018).

    Article  CAS  Google Scholar 

  25. G.X. Gu, C.T. Chen, and M.J. Buehler: De novo composite design based on machine learning algorithm. Extreme Mech. Lett. 18, 19 (2018).

    Article  Google Scholar 

  26. G.X. Gu, C.T. Chen, D.J. Richmond, and M.J. Buehler: Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater. Horiz. 5, 939 (2018).

    Article  CAS  Google Scholar 

  27. L. Breiman: Random forests. Mach. Learn. 45, 5 (2001).

    Article  Google Scholar 

  28. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825 (2011).

    Google Scholar 

  29. F. Chollet: Keras: the python deep learning library. Astrophysics Source Code Library (2018).

    Google Scholar 

  30. D.P. Kingma and J. Ba: Adam: A method for stochastic optimization, in International Conference on Learning Representation (2015).

    Google Scholar 

  31. D. Erhan, Y. Bengio, A. Courville, and P. Vincent: Visualizing higher-layer features of a deep network. Département d’Informatique Rech. Opérationnelle, Tech. Rep. 1341 No. 1341, 1 (2009).

    Google Scholar 

  32. Y. Nesterov: A method for solving the convex programming problem with convergence rate O(1/k 2). Dokl. Akad. Nauk SSSR 269, 543 (1983).

    Google Scholar 

  33. B. Zoph and Q. Le: Neural architecture search with reinforcement learning, in International Conference on Learning Representations (2017).

    Google Scholar 

  34. S. Ioffe and C. Szegedy: Batch normalization: accelerating network training by reducing covariate shift, in International Conference on Machine Learning, edited by F. Bach and D. Blei (Proc. of Mach. Learn. Res. 37, Lille, France, 2015) p. 448.

    Google Scholar 

  35. M.D. Zeiler and R. Fergus: in Visualizing and understanding convolutional Networks, in European Conference on Computer Vision 2014, edited by D. Fleet, T. Pajdla, B. Schiele, T. Tuytelaars (13th European Conf. on Comp. Vision 8689, Zurich, Switzerland, 2014), p. 818.

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Regents of the University of California, Berkeley and the Extreme Science and Engineering Discovery Environment (XSEDE) Bridges system at the Pittsburgh Supercomputing Center (PSC) through allocation TG-DMR180085, which is supported by National Science Foundation grant number ACI-1548562. The authors also acknowledge support from the Savio computational cluster resource provided by the Berkeley Research Computing program. Additionally, the authors acknowledge support by the Basic Science Research Program (2016R1C1B2011979) and Creative Materials Discovery Program (2016M3D1A1900038) through the National Research Foundation of Korea (NRF), as well as the support by the KAIST-funded Global Singularity Research Program for 2019 (N11190118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seunghwa Ryu or Grace X. Gu.

Supporting Information

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.49

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Kim, Y., Ryu, S. et al. Using convolutional neural networks to predict composite properties beyond the elastic limit. MRS Communications 9, 609–617 (2019). https://doi.org/10.1557/mrc.2019.49

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.49

Navigation