Skip to main content
Log in

Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses

  • Artificial Intelligence Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

There is a genuine need to shorten the development period for new materials with desired properties. In this work, machine learning (ML) was conducted on a dataset of the elastic moduli of 219 bulk-metallic glasses (BMGs) and another dataset of the critical casting diameters (Dmax) of 442 BMGs. The resulting ML model predicted the moduli and Dmax of BMGs in good agreement with most experimentally measured values, and the model even identified some errors reported in the literature. This work indicates the great potential of ML in design of advanced materials with target properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table I.
Table II.
Figure 2
Table III.
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Table IV

Similar content being viewed by others

References

  1. W.H. Wang: The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487–656 (2012).

    Article  CAS  Google Scholar 

  2. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim: Machine learning in materials informatics: Recent applications and prospects. NPJ Comput. Mater. 3, 54 (2017).

    Article  Google Scholar 

  3. P. Raccuglia, K.C. Elbert, P.D.F. Adler, C. Falk, M.B. Wenny, A. Mollo, M. Zeller, S.A. Friedler, J. Schrier, and A.J. Norquist: Machine-learningassisted materials discovery using failed experiments. Nature 533, 73–76 (2016).

    Article  CAS  Google Scholar 

  4. S. Ramakrishna, T.Y. Zhang, W.C. Lu, Q. Qian, J.S.C. Low, J.H.R. Yune, D.Z.L. Tan, S. Bressan, S. Sanvito, and S.R. Kalidindi: Materials informatics. J. Intell. Manuf. 29, 1–20 (2018).

    Google Scholar 

  5. Y.T. Sun, H.Y. Bai, M.Z. Li, and W.H. Wang: Machine learning approach for prediction and understanding of glass-forming ability. J. Phys. Chem. Lett. 8, 3434–3439 (2017).

    Article  CAS  Google Scholar 

  6. L. Ward, S.C. O’Keeffe, J. Stevick, G.R. Jelbert, M. Aykol, and C. Wolverton: A machine learning approach for engineering bulk metallic glass alloys. Acta Mater. 159, 102–111 (2018).

    Article  CAS  Google Scholar 

  7. F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, and A. Mehta: Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4, 1566 (2018).

    Article  Google Scholar 

  8. Z.Q. Liu and Z.F. Zhang: Strengthening and toughening metallic glasses: The elastic perspectives and opportunities. J. Appl. Phys. 115, 163505 (2014).

    Article  Google Scholar 

  9. Z. Long, W. Liu, M. Zhong, Z. Yun, M. Zhao, G. Liao, and Z. Chen: A new correlation between the characteristics temperature and glass-forming ability for bulk metallic glasses. J. Therm. Anal. Calorim. 3, 1645–1660 (2018).

    Article  Google Scholar 

  10. J.Q. Wang, W.H. Wang, H.B. Yu, and H.Y. Bai: Correlations between elastic moduli and molar volume in metallic glasses. Appl. Phys. Lett. 94, 121904 (2009).

    Article  Google Scholar 

  11. K. Zhao, Z. Bai, L. Zhang, and G. Liu: Correlation between atomic size and elastic properties/glass transition temperature in metallic glasses. Sci. China: Phys., Mech. Astron. 60, 106121 (2017).

    Google Scholar 

  12. M.X. Xia, Q.G. Meng, S.G. Zhang, C.L. Ma, and J.G. Li: Thermodynamic characteristics of metallic glass-forming liquids. Acta Phys. Sin. 55, 6543–6549 (2006).

    Article  CAS  Google Scholar 

  13. Q. Jiang, B.Q. Chi, and J.C. Li: A valence electron concentration criterion for glass-formation ability of metallic liquids. Appl. Phys. Lett. 82, 2984–2986 (2003).

    Article  CAS  Google Scholar 

  14. A. Inoue, and A. Takeuchi: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243–2267 (2011).

    Article  CAS  Google Scholar 

  15. K.J. Laws, D.B. Miracle, and M. Ferry: A predictive structural model for bulk metallic glasses. Nat. Commun. 6, 8123 (2015).

    Article  CAS  Google Scholar 

  16. H. Peng, S.S. Li, and T.Y. Huang: A glass forming ability indicator of Mg-based metallic glasses using atomic radius and electronegativity. J. Tsinghua Univ. 8, 1188–1192 (2010).

    Google Scholar 

  17. Z.P. Lu, C.T. Liu, and Y.D. Dong: Effects of atomic bonding nature and size mismatch on thermal stability and glass-forming ability of bulk metallic glasses. J. Non-Cryst. Solids 341, 93–100 (2004).

    Article  CAS  Google Scholar 

  18. P. Pyykkö and M. Atsumi: Molecular single-bond covalent radii for elements 1–118. Chem. Eur. J. 15, 186–197 (2009).

    Article  Google Scholar 

  19. J.E. Huheey, E.A. Keiter, and R.L. Keiter: Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed. (HarperCollins, New York, 1993), pp. 513–515.

    Google Scholar 

  20. B. Cordero, V. Gómez, A.E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez: Covalent radii revisited. J. Chem. Soc., Dalton Trans. 21, 2832–2838 (2008).

    Article  Google Scholar 

  21. D.B. Miracle: A physical model for metallic glass structures: An introduction and update. JOM 64, 846–855 (2012).

    Article  CAS  Google Scholar 

  22. I. Guyon and A. Elisseeff: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2011).

    Google Scholar 

  23. G. James, D. Witten, R. Tibshirani, and T. Hastie: An Introduction to Statistical Learning with Applications in R (Springer, New York, 2013).

    Google Scholar 

  24. G. Zhang and H. Ge: Support vector machine with a Pearson VII function kernel for discriminating halophilic and non-halophilic proteins. Comput. Biol. Chem. 46, 16–22 (2013).

    Article  CAS  Google Scholar 

  25. X.K. Xi, S. Li, R.J. Wang, D.Q. Zhao, M.X. Pan, and W.H. Wang: Bulk scandium-based metallic glasses. J. Mater. Res. 20, 2243–2247 (2005).

    Article  CAS  Google Scholar 

  26. H. Choi-Yim, D. Xu, and W.L. Johnson: Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X = B, Fe, Cu) alloy systems. Appl. Phys. Lett. 82, 1030–1032 (2003).

    Article  CAS  Google Scholar 

  27. H. Choi-Yim, D. Xu, M.L. Lind, J.F. Löffler, and W.L. Johnson: Structure and mechanical properties of bulk glass-forming Ni-Nb-Sn alloys. Scr. Mater. 54, 187–190 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by the National Key R&D Program of China (No. 2018YFB0704404), the Hong Kong Polytechnic University (internal grant nos. 1-ZE8R and G-YBDH), and the 111 Project of the State Administration of Foreign Experts Affairs and the Ministry of Education, China (grant no. D16002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong-Yi Zhang.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.44

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, J., Zhang, TY. & Shi, SQ. Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses. MRS Communications 9, 576–585 (2019). https://doi.org/10.1557/mrc.2019.44

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.44

Navigation