Skip to main content
Log in

Excitonic nonlinear optical properties in AlN/GaN spherical core/shell quantum dots under pressure

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

This work is based on a recent theoretical study of how the hydrostatic pressure and core/shell sizes affect the optical properties associated with the transition from the ground state to first excited state (1s–1p), of an exciton confined in spherical core/shell quantum dots (SCSQDs). We have computed under an effective mass framework, linear, third-order nonlinear, and total absorption coefficients (AC) and refractive index (RI) as functions of photon energy for different sizes of SCSQDs with varying hydrostatic pressure. Our results show that the optical absorption is deeply dependent on the incident light intensity. Both AC and RI significantly influenced by the confinement and pressure effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I.
Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. F.Q. Chen, and D. Gerion: Fluorescent CdSe/ZnS Nanocrystal−Peptide Conjugates for Long-term, Nontoxic Imaging and Nuclear Targeting in Living Cells. Nano Lett. 4, 1827 (2004).

    Article  CAS  Google Scholar 

  2. X. Peng, and D. Battaglia: Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent. Nano Lett. 2, 1027 (2002).

    Article  Google Scholar 

  3. S. Xu, S. Kumar, and T. Nann: Rapid Synthesis of High-Quality InP Nanocrystals. J. Am. Chem. Soc. 128, 1054 (2006).

    Article  CAS  Google Scholar 

  4. M. Braus, C. Burda, and M.A. El-Sayed: Variation of the Thickness and Number of Wells in the CdS/HgS/CdS Quantum Dot Quantum Well System. J. Phys. Chem. A 105, 5548 (2001).

    Article  Google Scholar 

  5. X. Zhong, R. Xie, Y. Basche, T. Zhang, and W. Knoll: High-Quality Violetto Red-Emitting ZnSe/CdSe Core/Shell Nanocrystals. Chem. Mater. 17, 4038 (2005).

    Article  CAS  Google Scholar 

  6. W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos: Hybrid nanorod-polymer solar cells. Science 295, 2425 (2002).

    Article  CAS  Google Scholar 

  7. R.D. Schaller, and V.I. Klimov: High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion. Phys. Rev. Lett. 92, 186601 (2004).

    Article  CAS  Google Scholar 

  8. W.S. Coe, W.K. Woo, M.G. Bawendi, and V. Bulovic: Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature (London) 420, 800 (2002).

    Article  CAS  Google Scholar 

  9. V.L. Colvin, M.C. Schlamp, and A.P. Alivisatos: Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature (London) 370, 354 (1994).

    Article  CAS  Google Scholar 

  10. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin: Efficient nearinfrared polymer nanocrystal light-emitting diodes. Science 295, 1506 (2002).

    Article  Google Scholar 

  11. B. Kraabel, A. Malko, J. Hollingsworth, and V.I. Klimov: Ultrafast dynamic holography in nanocrystal solids. Appl. Phys. Lett. 78, 1814 (2001).

    Article  CAS  Google Scholar 

  12. A.R. Kortan, R. Hull, R.L. Opila, M.G. Bawendi, M.L. Steigerwald, P.J. Carroll, and L. Brus: Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media. J. Am. Chem. Soc. 112, 1327 (1990).

    Article  CAS  Google Scholar 

  13. H.S. Zhou, I. Honma, and H. Komiyama: Coated semiconductor nanoparticles; the cadmium sulfide/lead sulfide system’s synthesis and properties. J. Phys. Chem. 97, 895 (1993).

    Article  CAS  Google Scholar 

  14. L. Spanhel, H. Weller, and A. Henglein: Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. J. Am. Chem. Soc. 109, 6632 (1987).

    Article  CAS  Google Scholar 

  15. C.F. Hoener, K.A. Allan, A.J. Brad, A. Campion, M.A. Fox, T.E. Mallouk, S.E. Webber, and J.M. White: Demonstration of a shell-core structure in layered cadmium selenide-zinc selenide small particles by x-ray photoelectron and Auger spectroscopies. J. Phys. Chem. 96, 3812 (1992).

    Article  CAS  Google Scholar 

  16. J. El Khamkhami, E. Feddi, E. Assaidc, F. Dujardind, B. Stébé, and J. Diouri: Binding energy of excitons in inhomogeneous quantum dots under uniform electric field. Physica E 15, 99–106 (2002).

    Article  Google Scholar 

  17. J.M. Ferreyra, and C.R. Proetto: Excitons in inhomogeneous quantum dots. Phys. Rev. B 57, 9061 (1998).

    Article  CAS  Google Scholar 

  18. G.B. Bryant: Transport through dirty Luttinger liquids connected to reservoirs. Phys. Rev. B 52, 16997 (1995).

    Article  CAS  Google Scholar 

  19. I. Karabulut, and S. Baskoutas: Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity. J. Appl. Phys. 103, 073512 (2008).

    Article  Google Scholar 

  20. H.M. Baghramyan, M.G. Barseghyan, A.A. Kirakosyan, R.L. Restrepo, and C.A. Duque: Linear and nonlinear optical absorption coefficients in GaAs/Ga1−xAlxAs concentric double quantum rings: Effects of hydrostatic pressure and aluminum concentration. J. Lumin. 134, 594–599 (2013).

    Article  CAS  Google Scholar 

  21. J.C. Martinez-Orozco, K.A. Rodriguez-Magdaleno, J.R. Suarez-Lopez, C.A. Duque, and R.L. Restrepo: Absorption coefficient and relative refractive index change for a double δ-doped GaAs MIGFET-like structure: Electric and magnetic field effects. Superlattices Microstruct. 92, 166–173 (2016).

    Article  CAS  Google Scholar 

  22. I. Karabulut, M.E. Mora-Ramos, and C.A. Duque: Nonlinear optical rectification and optical absorption in GaAs-Ga1-xAlxAs asymmetric double quantum wells: Combined effects of applied electric and magnetic fields and hydrostatic pressure. J. Lumin. 131, 1502–1509 (2011).

    Article  CAS  Google Scholar 

  23. N. Aghoutane, M. El-Yadri, A. El Aouami, E. Feddi, F. Dujardin, M. El Haouari, C.A. Duque, C.V. Nguyen, and H.V. Phuc: Refractive index changes and optical absorption involving 1s-1p excitonic transitions in quantum dot under pressure and temperature effects. Appl. Phys. A 125, 17 (2019).

    Article  Google Scholar 

  24. H. Yildirim, and M. Tomak: Optical absorption of a quantum well with an adjustable asymmetry. Eur. Phys. J. B 50, 559–564 (2006).

    Article  CAS  Google Scholar 

  25. G. Rezaei, M.R.K. Vahdani, and B. Vaseghi: Nonlinear optical properties of a hydrogenic impurity in an ellipsoidal finite potential quantum dot. Curr. Appl. Phys. 11, 176–181 (2011).

    Article  Google Scholar 

  26. U. Yesilgul, F. Ungan, E.B. Al, E. Kasapoglu, H. Sari, and I. Sökmen: Effects of magnetic field, hydrostatic pressure and temperature on the nonlinear optical properties in symmetric double semi-V-shaped quantum well. Opt. Quantum Electron. 48, 560 (2016).

    Article  Google Scholar 

  27. E. Kasapoglu, F. Ungan, H. Sari, I. Sökmen, M.E. Mora-Ramos, and C.A. Duque: Donor impurity states and related optical responses in triangular quantum dots under applied electric field. Superlattices Microstruct. 73, 171–184 (2014).

    Article  CAS  Google Scholar 

  28. E. Hanamura: Very large optical nonlinearity of semiconductor microcrystallites. Phys. Rev. B 37, 1273–1279 (1988).

    Article  CAS  Google Scholar 

  29. L. Lu, W. Xie, and Z. Shu: Combined effects of hydrostatic pressure and temperature on nonlinear properties of an exciton in a spherical quantum dot under the applied electric field. Phys. B 406, 3735–3740 (2011).

    Article  CAS  Google Scholar 

  30. M. El Haouari, A. Talbi, E. Feddi, H. El Ghazi, A. Oukerroume, and F. Dujardin: Linear and nonlinear optical properties of a single dopant in strained AlAs/GaAs spherical core/shell quantum dots. Opt. Commun. 383, 231–237 (2017).

    Article  Google Scholar 

  31. Z. Zeng, C.S. Garoufalis, A.F. Terzis, and S. Baskoutas: Linear and nonlinear optical properties of ZnO/ZnS and ZnS/ZnO core shell quantum dots: Effects of shell thickness, impurity, and dielectric environment. J. Appl. Phys. 114, 023510 (2013).

    Article  Google Scholar 

  32. S.H. Haa, H.Q. Liua, and J. Zhu: Temperature and pressure modulation on intersubband optical absorption in an AlxGa1-xN/AlN core-shell nanowire. Superlattices Microstruct. 123, 183–188 (2018).

    Article  Google Scholar 

  33. N. Aghoutane, M. El-Yadri, E. Feddi, F. Dujardin, M. Sadoqi, and G. Long: Pressure effect on an exciton in a wurtzite AlN/GaN/AlN spherical core/shell quantum dot. MRS Commun. 8, 527–532 (2018).

    Article  CAS  Google Scholar 

  34. S.H. Ha, and S.L. Ban: Binding energies of excitons in a strained wurtzite GaN/AlGaN quantum well influenced by screening and hydrostatic pressure. J. Phys.: Condens. Matter 20, 085218 (2008).

    Google Scholar 

  35. J.-M. Wagner, and F. Bechstedt: Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys. Rev. B 66, 115202 (2002).

    Article  Google Scholar 

  36. C.M. Duque, A.L. Morales, M.E. Mora-Ramos, and C.A. Duque: Excitonrelated optical properties in zinc-blende GaN/InGaN quantum wells under hydrostatic pressure. Phys. Status Solidi B 252, 670–677 (2015).

    Article  CAS  Google Scholar 

  37. H. Eshghi: The effect of hydrostatic pressure on material parameters and electrical transport properties in bulk GaN. Phys. Lett. A 373, 1773–1776 (2009).

    Article  CAS  Google Scholar 

  38. M. Zhang, and J.J. Shi: Influence of pressure on exciton states and interband optical transitions in wurtzite InGaN/GaN coupled quantum dot nanowire heterostructures with polarization and dielectric mismatch. J. Appl. Phys. 111, 113516 (2012).

    Article  Google Scholar 

  39. P.Y. Yu, and M. Cordona: Fundamentals of Semiconductors (Springer, Berlin, 1998).

    Google Scholar 

  40. F.J. Culchac, N. Porras-Montenegro, and A. Latge: Hydrostatic pressure effects on electron states in GaAs-(Ga, Al) As double quantum rings. J. Appl. Phys. 105, 094324 (2009).

    Article  Google Scholar 

  41. M.G. Barseghyan, M.E. Mora-Ramos, and C.A. Duque: Hydrostatic pressure, impurity position and electric and magnetic field effects on the binding energy and photo-ionization cross section of a hydrogenic donor impurity in an InAs Pöschl-Teller quantum ring. Eur. Phys. J. B 84, 265 (2011).

    Article  CAS  Google Scholar 

  42. F. Dujardin, E. Feddi, E. Assaid, and A. Oukerroum: Stark shift and dissociation process of an ionized donor bound exciton in spherical quantum dots. Eur. Phys. J. B 74, 507 (2010).

    Article  CAS  Google Scholar 

  43. E. Feddi, A. Zouitine, A. Oukerroum, F. Dujardin, E. Assaid, and M. Zazoui: Size dependence of the polarizability and Haynes rule for an exciton bound to an ionized donor in a single spherical quantum dot. J. Appl. Phys. 117, 064309 (2015).

    Article  Google Scholar 

  44. J. El Khamkhami, E. Feddi, E. Assaid, F. Dujardin, B. Stébé, and J. Diouri: Low magnetic field effect on the polarisability of excitons in spherical quantum dots. Phys. Scr. 64, 504 (2001).

    Article  Google Scholar 

  45. M.R.K. Vahdani, and G. Rezaei: Influence of position-dependent effective mass on third-order nonlinear optical susceptibility of impurity doped quantum dots in the presence of Gaussian white noise. Phys. Lett. A 373, 3079–3084 (2009).

    Article  CAS  Google Scholar 

  46. A.R. Jafari: Optical properties of hydrogenic impurity in an inhomogeneous infinite spherical quantum dot. Physica B 456, 72–77 (2015).

    Article  CAS  Google Scholar 

  47. J. Abraham, H. Mark, and A. John Peter: Dielectric confinement on exciton binding energy and nonlinear optical properties in a strained Zn1–xinMgxinSe/Zn1–xoutMgxoutSe quantum well. J. Semicond. 33, 092001 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Feddi or G. Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghoutane, N., El-Yadri, M., El Aouami, A. et al. Excitonic nonlinear optical properties in AlN/GaN spherical core/shell quantum dots under pressure. MRS Communications 9, 663–669 (2019). https://doi.org/10.1557/mrc.2019.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.43

Navigation